
Noname manuscript No.

(will be inserted by the editor)

Loda: Lightweight on-line detector of anomalies

Tomáš Pevný

the date of receipt and acceptance should be inserted later

In supervised learning it has been shown that a collection of weak classifiers can
result in a strong classifier with error rates similar to those of more sophisticated
methods. In unsupervised learning, namely in anomaly detection such a paradigm has
not yet been demonstrated, despite the fact that many methods have been devised as
counterparts to supervised binary classifiers. This work partially fills the gap by showing
that an ensemble of very weak detectors can lead to a strong anomaly detector with
a performance equal to or better than state of the art methods. The simplicity of the
proposed ensemble system (to be called Loda) is particularly useful in domains where
a large number of samples need to be processed in real-time or in domains where the
data stream is subject to concept drift and the detector needs to be updated on-line.

Besides being fast and accurate, Loda is also able to operate and update itself on
data with missing variables. Loda is thus practical in domains with sensor outages.
Moreover, Loda can identify features in which the scrutinized sample deviates from
the majority. This capability is useful when the goal is to find out what has caused the
anomaly. It should be noted that none of these favorable properties increase Loda’s
low time and space complexity.

We compare Loda to several state of the art anomaly detectors in two settings:
batch training and on-line training on data streams. The results on 36 datasets from
UCI repository illustrate the strengths of the proposed system, but also provide more
insight into the more general questions regarding batch-vs-on-line anomaly detection.

1 Introduction

Imagine identifying anomalous users in a social network Šourek et al (2013), where
user’s behavior constantly changes and their numbers are enormous, detecting weirdly
behaving computers (frequently an indication of an infection by malware) in a network

T. Pevný
Department of Computers and Engineering
Czech Technical University in Prague
Karlovo naměstí 13,Prague, 121 35, Czech Republic
Tel.: +420 607 237 527
E-mail: pevnytom@fel.cvut.cz

2 Tomáš Pevný

of large corporation with hundreds of thousands of computers, whose traffic constantly
changes Pevný et al (2012), or identification of fraudulent card transactions Akhilomen
(2013) realized thorough big credit providers. These domains share similar features,
which is processing of enormous number of samples with constantly changing charac-
teristics. Most fast versions of existing anomaly detection methods, especially those
based on indexing techniques, require the data to be available in one single batch and
to fit in the memory, which is in aforementioned domains clearly impossible. Moreover,
data’s non-stationarity forces detector’s models to be continuously updated, which is
again very difficult with indexing techniques, as created indexes would need to be re-
calculated, which is usually expensive. Other methods, such as Bay and Schwabacher
(2003) assumes some additional knowledge which might not be available. The presented
anomaly detector has been designed with respect to these constraints, and it has been
shown to achieve state of the art accuracy measured by area under ROC curve.

The definition of an anomaly, outlier, or novelty is not unified in the literature.
Recent book Aggarwal (2013a) considers all these terms to be equivalent, and defines
them as follows: “An outlier is an observation which deviates so much from the other

observations as to arouse suspicions that it was generated by a different mechanism.”

According to this definition, outliers are generated by the same probability distribution
as normal samples, but they are very rare. In this text, we define anomalies to be
samples generated by a different probability distribution than normal ones, and their
presence in the data to be rare, less than 1-10% of the data. One-class problem is
similar to the anomaly-detection problem with the difference that training set contains
samples exclusively from the normal class and testing set contains may contain samples
from other classes at any rate.

An ideal detector would model joint probability of data-generating processes. Al-
though this goes against the principle of never solving a more difficult process than
is needed (density estimation vs. classification), the knowledge of the probability of
observed samples is useful1 information in making a decision about their anomalous-
ness. Modeling joint probability is generally difficult in spaces of many dimensions
and in practice some simplifications have to be made. The detector presented here,
further called Loda, approximates the joint probability by using a collection of one-
dimensional histograms, where every one-dimensional histogram is constructed on an
input space projected onto a randomly generated vector. The rationale behind the use
of one-dimensional histograms is that they can be efficiently constructed in one pass
over data and the query operation needed during classification is simple. Consequently,
Loda’s complexity is linear with respect to the number of training samples n and the
dimension of the input space d.

Although one one-dimensional histogram is a very weak anomaly detector, their
collection yields to a strong detector. This phenomenon (collection of weak classifiers
result in a strong classifier) is already a well established paradigm in supervised clas-
sification Kuncheva (2004); Freund et al (1996), but has not been demonstrated in
unsupervised anomaly detection, as most ensemble systems used in anomaly detec-
tion Aggarwal (2013b); Lazarevic and Kumar (2005); Tan et al (2011); Liu et al (2008)
use individual detectors of much higher complexity than that of a one-dimensional his-
togram. The comprehensive experimental section (see Section 4) demonstrates that the
proposed ensemble of one-dimensional histograms has accuracy measured by the area

1 The hypothetical knowledge of the probability function generating the data would allow
to formulate the problem as a hypothesis test.

Loda: Lightweight on-line detector of anomalies 3

under ROC curve competitive with established solutions of much higher complexities.
Loda achieves a very good accuracy to complexity ratio and therefore it is well suited
for processing large data.

Besides being fast, Loda is able to deal with missing variables and can rank features
according to their contribution to sample’s anomalousness. Both of these capabilities
are important for practitioners. For example, the knowledge of which features caused
the anomaly can serve as guidance for further investigation and can decrease overall cost
of anomaly investigation. This knowledge can also be used to cluster similar anomalies
together which is again useful during investigation. Interestingly, none of these abilities
substantially increase Loda’s computational complexity. Note that both abilities can
be achieved with any homogenous ensemble-based anomaly detector, where individ-
ual detectors within are diversified by sub-space sampling. Detectors with sub-space
sampling were recently proposed Keller et al (2012); Nguyen et al (2010); Muller et al
(2011) but neither the robustness against missing features or the explanation of the
cause of a sample’s anomalousness had been mentioned.

Loda is controlled by two hyper-parameters: number of one dimensional histograms
and number of histogram bins. Because the hyper-parameter setting is particularly
cumbersome in most anomaly detection methods where few or no anomalous samples
are available (most anomaly detection), a method to determine these parameters solely
on the basis of observed samples is presented. This makes Loda hyper-parameter free.

Loda’s accuracy is firstly extensively compared to the prior art trained in the batch
mode on 36 problems downloaded from the UCI database Frank and Asuncion (2010) in
the category of classification problems with numerical attributes. The reason, why Loda
is compared to detectors processing only data presented in one batch is that we wanted
to compare Loda to state of the art detectors, even though they are not applicable for
intended scenario. The experimental results reveal that Loda’s measured by area under
ROC curve is equal to and many times better than that of other algorithms with higher
computational complexity requiring batch training (we expect algorithms trained in
batch to perform better than on-line algorithms). Consequently Loda provides a good
alternative to the already established solutions on problems with a large number of
features and samples that need to be processed efficiently. Secondly, Loda is compared
to the prior art on streaming problems and it is shown when it is better to continuously
update histogram and when to do so in batches. Finally, Loda’s capability to efficiently
process big datasets is demonstrated on the WEB UCI dataset Ma et al (2009) with
2.4 million samples and 3.2 million features.

The contribution of this paper is threefold: (i) it demonstrates that an ensemble of
very weak anomaly detectors can lead to a strong anomaly detector; (ii) it presents a
lightweight anomaly detector suitable for data-streams robust to missing variables and
identifying causes of anomalies; (iii) it extensively compares existing and the proposed
anomaly detector, which sheds some light on conditions in which a particular anomaly
detector excels.

This paper is organized as follows: The next section reviews relevant prior art,
shows its computational complexity, and discusses issues related to on-line learning
and classification. Loda is presented in Section 3. In Section 4, Loda is experimentally
compared to the prior art, its low computational requirements are demonstrated on
artificial data, and its efficiency is demonstrated on a large-scale dataset Ma et al
(2009). The same section also demonstrates Loda’s ability to handle data with missing
values and explain a sample’s anomalousness. Finally Section 5 concludes the paper.

4 Tomáš Pevný

For better reproducibility, all source code, results, datasets, and their creation is
available at http://agents.fel.cvut.cz/stegodata/Loda.zip.

2 Related work

The recent book Aggarwal (2013a) and survey Chandola et al (2009) contain many
methods for anomaly and outlier detection. Below, those relevant to this work are
reviewed.

2.1 Model-centered detectors

Basic model-centered anomaly detectors assume that data follow a known distribution.
Detectors Shyu et al (2003) based on principal component analysis (PCA) assume
that the data fit a multi-variate normal distribution. Despite this being rarely true
in practice, they frequently outperform more complicated detectors. The complexity
of their training is O(nd3), where d is the dimension of the input space and n is the
number of samples used for training.

A One-Class Support Vector Machine Schölkopf et al (2001) (1-SVM) does not
make any assumptions about the distribution of data. It finds the smallest area where
1�⌫ fraction of data are located (⌫ is parameter of the method specifying desired false-
positive rate). This is achieved by projecting the data to a high-dimensional (feature)
space and then finding a hyperplane best separating the data from the origin. It has
been noted that when 1-SVM is used with a linear kernel it introduces a bias to the
origin Tax and Duin (2004), which can be removed by using a Gaussian kernel. The
Support Vector Data Description algorithm Tax and Duin (2004) (SVDD) removes the
bias in 1-SVM by replacing the separation hyperplane by a sphere encapsulating most
of the data. The complexity of both methods is super-linear with respect to the number
of samples, n, being O(n3d) in the worst-case.

Isolation Forest Liu et al (2008) (IForest) relies on a collection of Isolation Trees
grown by using unlabeled data. During growth, internal nodes are added until the
terminal leafs contain one sample or the maximum depth is reached. The anomaly
score is proportional to the level of leaf reached by the sample, as the idea is that
anomalies will reach leafs at the base of the tree (close to the root), while legitimate
samples reach leafs closer to the root. The complexity of training one tree is O(n log n)

and of classification O(log n), where the authors recommend subsampling of training
samples to increase diversity in the ensemble, robustness against anomalies within the
data, and simultaneously decrease complexity of the training and classification.

The recently proposed FRAC Noto et al (2012) aimed to bridge the gap between
supervised and unsupervised learning. FRAC is an ensemble of models, each estimating
one feature based on other features (for data of a dimension d, FRAC uses d different
models). The rationale behind this is that anomalous samples exhibit different de-
pendencies among features which can be detected from prediction errors modeled by
histograms. FRAC’s complexity depends on the algorithm used to implement individ-
ual models, which can be large, considering that a search for possible hyper-parameters
needs to be undertaken. Because of this, an ordinary linear least-square regression is
used here leading to the complexity O(nd4). FRAC is not well suited for on-line learning

Loda: Lightweight on-line detector of anomalies 5

since an update of models changes the distributions of errors that cannot be estimated
from one sample.

The on-line training of model-centered detectors is generally difficult as the al-
gorithms used to create the model have non-trivial complexity with respect to the
dimension, or models cannot be updated incrementally (e.g. principal component anal-
ysis). The on-line adaptation of 1-SVM is discussed in Kivinen et al (2004), but the
solution is an approximation of the solution returned by the batch version. The exact
on-line version of SVDD is described in Tax and Laskov (2003), but the algorithm re-
quires substantial bookkeeping thereby increasing the complexity. The proposed Loda
is also model-based detector and as will be shown in Section 4, its one dimensional
histograms can be easily updated based on upcoming samples which makes the whole
algorithm friendly to on-line learning.

2.2 Data-centered detectors

Data-centered detectors do not have any built-in model. A sample’s anomalousness is
determined according to its distance to all previously observed samples. Consequently,
there is no training phase as new samples are just added to the set of already observed
samples. However, this increases the complexity of the classification phase, which is a
linear function of the number of samples n.

A k-nearest neighbor Knorr and Ng (1999) (KNN) is a popular method to identify
outliers inspired by the corresponding method from classification. It ranks samples
according to their distance to kth- nearest neighbor. It has been recently shown that
a variant of KNN Sricharan and Hero (2011) converges to the optimal density-level
detector for a given false positive rate. Nevertheless KNN has been criticized for not
being able to detect outliers in data with clusters of different densities Breunig et al
(2000). The local outlier factor Breunig et al (2000) (LOF) solves this problem by
defining the outlier score as a fraction of sample’s distance to its kth-nearest neighbor
and the average of the same distance of all its k nearest neighbors. True inliers have a
score around one while outliers have much greater score. We refer to Zimek et al (2012)
for a comprehensive review of the prior art.

The complexity of the classification phase of nearest-neighbor based detectors is
driven by the nearest-neighbor search, which is an O(n) operation in the worst case.
More efficient approaches based on bookkeeping Pokrajac et al (2007), better search
structures like KD-trees Bentley (1975), or approximate search Andoni and Indyk
(2006) have been adopted. Nevertheless, the complexity of all methods depends in
some way on the number of training samples n, and better search structures are usually
useful only in low dimensions.

2.3 on-line anomaly detectors

There are few works in on-line anomaly detection. The closest work to this is Half-Space
trees Tan et al (2011) (HS-Trees), which is a method similar to Isolation Forest with the
difference that decision rules within tree-nodes are generated randomly. The output of
each HS-tree can be interpreted as a crude estimate of the probability density function,
which is further refined by taking a sufficient number of them. It is worth noting that
HS-trees assume that the data is scaled such that values of features are bounded in

6 Tomáš Pevný

[0, 1]. This is in a sharp contrast to Loda only requiring features to have approximately
the same scale, which is a more relaxed condition, especially if concept drift occurs.
HS-trees handle concept-drift by dividing data-streams into sample batches of size 256,
where HS-trees trained on a previous batch are used to scrutinize samples in a given
batch. Simultaneously new HS-trees are learned on a current batch and once all samples
from the current batch are processed, new HS-trees replaces the old one.

OLINDDA Spinosa et al (2009) uses standard k-means clustering to group pre-
viously observed samples into clusters called concepts. Anomalies not belonging to
any cluster are grouped into candidate clusters, which based on cohesiveness crite-
ria are either promoted as a new cluster and novel concept is reported, or evicted.
Thus OLINDDA focuses on detection of a novel concepts in streams rather than on
identification of anomalies.

2.4 Ensembles and random projections

Ensembles have so far been underutilized in anomaly detection. A significant portion of
the prior art focuses on a unification of anomaly scores Gao and Tan (2006); Schubert
et al (2012), because different detectors within one ensemble may provide anomaly
scores of different magnitudes Nguyen et al (2010). Diversifying detectors by random
subsets of features was presented Lazarevic and Kumar (2005); Keller et al (2012) to
improve the accuracy, especially on high dimensional problems.

Projections of the input space onto the arbitrary sub-space have been utilized
mainly in distance-based outlier detection schemes to speedup the search of nearest
neighbors. De Vries et al. de Vries et al (2010) performs the kth-NN search in the
LOF first in the random sub-space on a larger neighborhood and then it is refined
by the search in the original input space. Similarly, Pham et al. Pham and Pagh
(2012) estimates the distribution of angles between samples in the input space from
the distribution of angles in the sub-space (distribution of angles has been proposed
in Kriegel and Zimek (2008) as a good anomaly criterion). In experiments in Section 4.3
the similar approach is used on prior art to compare it to Loda.

Most prior art employs ensembles and random projections with data-centered de-
tectors, which have high computational complexity and are not well suited for real-time
processing. Exceptions are Isolation Forest Liu et al (2008) and Half-Space Trees Tan
et al (2011) relying on an ensemble of trees, each having a relatively low accuracy.
This is similar to Loda which uses even simpler model (one-dimensional histogram)
with even lower complexity, but their combination is similarly powerful. Random pro-
jections in Loda are used to project the input space into a single dimension, which
simplifies the complexity of all operations over it. Loda’s sparse random projections
can be considered as a sub-space sampling method. Unlike the prior art, the sub-space
method is not used only to increase efficacy, but also to gain robustness against missing
variables and the ability to find causes of anomalousness of a given sample.

Interpreting the decision in anomaly detection is very important in practice since
it can reduce the cost of subsequent analysis and increases trust of the detector. The
work Knorr and Ng (1999) has focused on finding a minimal sub-space in which a given
sample is an outlier. Algorithms presented therein are data-centered and suitable only
for low-dimensions. HiCS algorithm Keller et al (2012) and the algorithm of Dang et
al. Dang et al (2013) both aim to identify a sub-space in which a scrutinized sample

Loda: Lightweight on-line detector of anomalies 7

is an outlier. Both are data-centered algorithms and consequently their computational
complexity is prohibitive for processing data-streams.

Loda’s method to identify relevant features bears similarity to HiCS algorithm. But
unlike HiCS, Loda’s method is general and can be used on all ensembles diversified
by random sub-space sampling. Finally, contrary to all prior art, the identification of
relevant features does not increase Loda’s computational complexity in big O notation.

3 Description of Loda

Loda is comprised of a collection of k one-dimensional histograms {h
i

}k
i=1

, each approx-
imating the probability density of input data projected onto a single projection vector
{w

i

2 Rd}k
i=1

. Projection vectors {w
i

}k
i=1

diversify individual histograms, which is an
essential requirement for ensemble systems to improve performance of single classifier
/ detector. Their initialization is described in detail below in Subsection 3.1.

Loda’s output, f(x), on a sample x is an average of the logarithm of probabilities
estimated on individual projection vectors. Adopting p̂

i

to denote the probability esti-
mated by ith histogram and w

i

to denote the corresponding projection vector, Loda’s
output f(x) can be written as

f(x) = �1

k

kX

i=1

log p̂
i

(xTw
i

), (1)

which can be reformulated as

f(x) = � log

kY

i=1

p̂
i

(xTw
i

)

! 1

k

(a)⇠ � log p(xTw
1

, xTw
2

, . . . , xTw
k

), (2)

where p(xTw
1

, xTw
2

, . . . , xTw
k

) denotes the joint probability of projections. Equa-
tion (2) shows that Loda’s output is proportional to the negative log-likelihood of the
sample, which means that the less likely a sample is, the higher the anomaly value
it receives. This holds under a bold assumption (a) in (2) that probability distribu-
tions on projection vectors w

i

and w
j

are independent 8i, j 2 k, i 6= j. Even though
this is almost never true in practice, Loda still delivers very good results. We believe
that the reasons are similar to those in naïve Bayes classifiers theoretically studied
by Zhang Zhang (2004), which give conditions under which the effects of conditional
dependencies cancel out. These conditions depend on the probability distribution of
both classes and they are difficult to be verified in practice as they require an exact
knowledge of conditional dependencies among features. Due to Loda’s similarity to
the Parzen window detector Yeung and Chow (2002), the similar argumentation might
explain Loda’s surprisingly good performance.

In high-dimensional spaces Loda can be related to a PCA based detector Shyu et al
(2003), because projection vectors w

i

and w
j

, i 6= j will be approximately orthogo-
nal (this is due to their random construction described below). Assuming again the
independence of xTw

i

and xTw
j

, the projected data are orthogonal and uncorrelated,
which are properties of Principal Component Analysis (PCA). Loda’s histogram on
random projections are therefore similar to histograms on principal components.

8 Tomáš Pevný

Algorithm 1: Loda’s training (update) routine.
input: data samples {xi 2 Rd}ni=1

;
output: histograms {h

1

, . . . , hn}, projection vectors {wi}ki=1

. ;

initialize projection vectors with
h
d�

1

2

i
non zero elements {wi}ki=1

;
initialize histograms {hi}ki=1

;
for j 1 to n do

for i 1 to k do
zi = xT

j wi ;
update histogram hi by zi;

end
end
return {hi}ki=1

and {wi}ki=1

.

Algorithm 2: Loda’s classification routine on sample x.
input: sample x, set of histograms {hi}ki=1

and projection vectores {wi}ki=1

.;
output: anomaly value f(x);
for i 1 to k do

zi = xTwi ;
obtain p̂i = p̂i(zi) from hi ;

end
return f(x) = � 1

k

Pk
i=1

log p̂i(zi) ;

Loda’s training and classification routines are summarized in Algorithm 1 and
Algorithm 2, respectively. Loda is initialized by generating a set of sparse random
projections {w

i

}k
i=1

, w
i

⇠ N(0,1d) with d
1

2 non-zero components and initializing the
corresponding set of histograms {h

i

}k
i=1

. Each histogram is updated by a training sam-
ple by projecting the sample onto a vector and then the corresponding histogram bin
is updated. The classification procedure follows similar steps, but instead of updat-
ing histograms, they return probabilities whose logarithms are averaged and returned.
Notice that the construction requires only one pass over the data and can be used on
data-streams by first classifying a new sample and then updating all histograms.

The rest of this section describes creation of and rationale behind sparse projection
vectors w

i

, presents how sparse projections enable robustness against missing variables
and allow explanation of sample’s anomalousness, and closes by commenting issues
related to building on-line histograms.

3.1 Random projections

Each sparse projection vector {w
i

}k
i=1

is created during initialization of the correspond-
ing histogram by first randomly selecting d�

1

2 non-zero features (d dimension of the
input space) and then randomly generating non-zero items according to N(0, 1). The
choice of normal distribution of non-zero items comes from the Johnson-Lindenstrauss
lemma Johnson and Lindenstrauss (1984) showing that with this choice, L

2

distances
between points in the projected space approximate the same quantity in the input space.
The d�

1

2 sparsity is due to Li (2007) showing that L
2

distances can be preserved with
random projections with only d�

1

2 non-zero elements. Another justification for the use

Loda: Lightweight on-line detector of anomalies 9

of sparse random projections is to increase diversity among histograms by making them
work on different sub-subspaces. This is a popular diversification technique used for
example in Random Forest Ho (1998).

One can ask a question, are random projections actually needed? Would a detec-
tor based on an ensemble of histograms of individual features (in this section called
per-feature detector) have similar accuracy? According to the experimental results on
problems used throughout this paper (described in Section 4 in detail), random pro-
jections consistently improve the performance (see Figure 10 in Appendix). On four
out of five rate of anomalies Loda was better than the per-feature detector. Wilcoxon
signed-rank test assessing if both detectors delivers the same performance was rejected
with a p-value, which means that the Loda is better and the difference is statistically
significant. For more details see comments under Figure 10.

3.2 Missing variables

Sparse projections enable Loda to handle missing variables by calculating the output
only from those histograms whose projection vector has a zero on the place of miss-
ing variables. To formalize the approach, assume that x 2 Rd is a sample with missing
variables, and J is the index-set of missing variables. Let I(x) be a set of indices of his-
tograms whose projections have all entries in J zero, i.e.

(

8i 2 I(x)
) (

8j 2 J
) (

w
ij

= 0

)

,

where w
ij

is jth element of the projection vector of ith histogram. Then, the anomaly
score for the sample x is calculated as

f(x) = � 1

|I(x)|
X

i2I(x)
log h

i

(x). (3)

Since the output of all histograms within Loda have the same meaning there is no need
for calibration as in Nguyen et al (2010). The final output is reliable even if several
histograms are omitted. Notice that by using the same mechanism, Loda can be also
trained on data with missing variables, as only detectors from I(x) are updated upon
observing sample x.

3.3 Explaining the cause of an anomaly

Two independent works Rondina et al (2014); Somol et al (2011) propose a feature
selection method for a binary classification based on the comparison of scores (e.g.
classification of error) of classifiers on randomly generated sub-spaces. Recognizing
that each histogram with sparse projections in Loda provide an anomaly score on a
randomly generated sub-space, this method can be used to rank features according to
theirs contribution to sample’s anomalousness.

Let p̂
i

denote the probability estimated by ith histogram on a sample x, and
I
j

/I
j

denote index sets of histograms that use / do not use jth feature. Formally
(

8i 2 I(x)
) (

w
ij

= 0

)

and
�
8i 2 I(x)

�
(

w
ij

6= 0

)

, where w
i

is the projection vector of
ith histogram. The score function proposed in the prior art calculates the difference
of means of � log p̂

i

over I
j

and ¯I
j

, which means that if an anomaly score with a
feature being present is much higher than that of without, the feature is important for
identification of outliers. We improve this score function by recognizing that it’s main

10 Tomáš Pevný

goal is to assert if the contribution of jth feature is statistically significant, for which
we use one-tailed two-sample t-test with a test statistic

t
j

=

µ
j

� µ̄
jr

s

2

j

|Ij | +
¯

s

2

j

|¯Ij |

, (4)

where µ
j

/µ̄
j

is the mean and s2
j

/s̄2
j

variance of � log p̂
i

calculated with i 2 I
j

/i 2 ¯I
j

.

The higher the t
j

the more important the jth feature is. Since the complexity of the
contrast function (4) is linear with respect to the number of projections k and number
of features d, the calculation of a feature’s contrast increases Loda’s complexity by
a constant in big O notation. Experiments demonstrating the feature selection are
presented in Section 4.6.

3.4 Histogram

The one-dimensional histogram on random projections is an important design element
in Loda, as it determines its learning mode (batch vs. on-line). The prior art on his-
togram construction and the optimal number of bins is very rich. In the following only
the tiny subset relevant to on-line construction on streams is recapitulated.

The most common approach for batch data are equi-width or equi-depth histograms
with bins having either the same length or containing the same number of samples.
In database research, V-Optimal histograms Poosala et al (1996) minimizing weighted
variance of estimated frequency are popular, but their construction has prohibitive
complexity O(n2

). Moving to data-steams, approximations of V-Optimal histograms
have been studied in Guha et al (2006), but the algorithms therein are quite complex.
Simpler Partition Incremental Discretization Gama and Pinto (2006) constructs a his-
togram in two steps: (i) create an equi-width histogram with small bins in a single
iteration through the data; (ii) use this fine histogram to return either equi-width or
equi-depth histogram with a given number of bins. The advantage is that user-provided
partition in step (i) is only indicative, as bins can be split if they already contain too
many samples. The disadvantage for Loda is that the second step needs to be triggered
before classifying a sample if the fine histogram was updated. DADO algorithm Don-
jerkovic et al (2000) constructs incremental histograms close in quality to V-optimal
histograms. The key idea behind this technique is to internally represent every bin by
two sub-bins. Counts in sub-bins are used for bin-split and bin-merge operations and
for their triggering. DADO’s biggest advantage for Loda is a fixed number of buck-
ets which implies fixed memory requirements. An interesting alternative was proposed
in Ben-Haim and Tom-Tov (2010) originally for determining splitting points in deci-
sion trees. Unlike all previous approaches it does not require any knowledge about the
range of values in histogram (see Appendix A for its recapitulation), but according to
our results Loda with equi-width histogram is better.

With the exception of the last algorithm, all above approaches require knowledge
of the range of modeled values in advance. This can be usually estimated from a
sample of data, but in the case of severe non-stationarity, the histogram’s support
can shift outside the initial range. A simple solution for equi-width histograms is to
specify bin width and store bin counts in a hash-map structure with keys =

⌅
x

�

⇧
,

where is an integer key, � is the bin width, and x is the value to be inserted. This

Loda: Lightweight on-line detector of anomalies 11

approach has O(1) time complexity and if coupled with count-min-sketch Cormode
and Muthukrishnan (2005) its space complexity can be upper bounded. It also allows
the modeling fixed length windows in a stream by keeping samples (indexes of bins)
to be later removed in memory. This can have potentially large memory footprint,
which can be decreased by using exponential buckets proposed in Datar et al (2002).
Alternatively, two histograms as in HS-Trees Tan et al (2011) can be used, where the
older one is used for classification while the newer one is being constructed on newly
arrived samples. Once the construction of the new one is finished, it replaces the old one
and the construction of the new one is started. Both constructions are experimentally
compared in Section 4.2 with interesting conclusions.

The determination of an optimal number of histogram bins b is an important design
parameter. For an equi-width histogram, there exists a simple method to determine
optimal number of histograms Birgé (2006), which is used in Loda. The method of Birgé
(2006) maximizes penalized maximum likelihood in the form

bX

i=1

n
i

log

bn
i

N
�
h
b� 1 +

(

log b
)

2.5

i
,

where n
i

is the number of samples that falls in ith bin and N =

P
b

i=1

n
i

is the total
number of samples. Penalization factor b�1+

(

log b
)

2.5 penalizes histograms with too
many bins.

3.5 Computational and storage complexity

Loda’s complexity is mainly determined by the type of the histogram. Assuming equi-
width histogram and sparse random projections the time complexity of learning is
O(nkd�

1

2

), where n is the number of training samples, d is the dimensionality of the
input space, and k is the number of histograms. The time complexity of classification is
O(kd�

1

2

). As discussed in the previous sub-section the space complexity can be made
O(k(d�

1

2

+ b)) with b being number of histogram bins.
For a floating window histogram over a length of l the space complexity can be

made O(k(d�
1

2

+ b log l)) by using the algorithm of Datar et al (2002) if space is
constrained, otherwise O(k(d�

1

2

+ b+ l)) for a naïve approach storing all l values for
discounting them on expiration.

Alternatively, on-line histogram can be implemented by using two alternating his-
tograms as in Tan et al (2011), where the older histogram is used for classification while
the new one is constructed. Once the construction of the new one is finished (it has
accommodated l samples), it replaces the older one for classification and the new con-
struction of the new histogram one is started. The advantage is possibly smaller space
complexity O(k(d�

1

2

+ b)) and according to the experimental results in Section 4.2
better robustness to clustered anomalies. Table 1 shows the time and space complexity
of Loda with continuous and two equi-width alternating histograms and the prior art
used in the experimental section.

12 Tomáš Pevný

time complexity
batch training classification space complexity

ba
tc

h

FRAC n · d4 O(d2) d2b
KNN O(1) O(nd) O(nd)
LOF O(1) O(knd) O(nd)
PCA O(nd4) O(kd) O(kd)
1-SVM O(n2d) ⇠ O(n3d) O(nd) O(nd)
IForest O(kl log l) O(k log l) O(kl)

on
-li

ne HS-Trees — O(k(h+ l)) O(kh2)

Loda two hist. O(nkd�
1

2) O(k(d�
1

2 + b)) O(k(d�
1

2 + b))

Loda cont. O(nkd�
1

2) O(kd�
1

2) O(k(d�
1

2 + b+ l))

Table 1: Time and space complexity of the anomaly detection algorithms compared in
this paper. The classification times for on-line detectors (HS-Trees, Loda with continu-
ous histograms and Loda with two alternating histograms) include time to update the
detector. The time to train Loda on batch data is included for comparison purposes.
n is the number of samples in the training set, d is the number of features, k in LOF
is the number of nearest-neighbor points, k in PCA is the number of components re-
tained after the projection, k in IForest, HS-Trees, and Loda is the number of trees or
histograms, h in HS-Trees is a maximal height of the tree, l in IForest is the number of
samples used to construct one tree, l in HS-Trees and Loda with continuous histogram
is the length of observation window, and finally b in FRAC and Loda is the number
of histogram bins. The FRAC implementation assumes ordinary least-square regres-
sion as features predictors. “Loda cont.” denotes Loda with naïve implementation of
continuously updated histogram. “Loda two hist.” denotes Loda with two alternating
histograms.

4 Experiments

Below Loda is compared to relevant state of the art in three different scenarios. The first
scenario simulates anomaly detection on stationary problems, where all detectors are
first trained on a training set and then evaluated on a separate testing set. This scenario
is included because it enables the comparison of Loda to other anomaly detectors, which
are designed for batch training and their accuracy should be superior due to more
sophisticated training algorithms. The second scenario mimics streamed data, where
anomaly detectors first classify a sample and then use it to update their model. The
third scenario uses a dataset with millions of samples and features to demonstrate that
Loda is able to efficiently handle big data. The section is concluded by an experimental
comparison of detectors time complexity in classify and update scenarios and by the
demonstration of robustness against missing variables and the identification of causes
of anomalies.

4.1 Stationary data

Loda has been compared to the following anomaly detectors chosen to represent differ-
ent approaches to anomaly detection: PCA based anomaly detector Shyu et al (2003),
1-SVM Schölkopf et al (2001), FRAC Noto et al (2012), �-version of k-nearest neigh-
bor detector Harmeling et al (2006) (KNN) which is equivalent to Sricharan and Hero
(2011) with � = 1 and s = d (in notation of the referenced work) if the area under

Loda: Lightweight on-line detector of anomalies 13

ROC curve (AUC) is used for evaluation, LOF Breunig et al (2000), and IForest Liu
et al (2008).

Benchmarking data were constructed by the methodology proposed in Emmott
et al (2013) converting real-world datasets Frank and Asuncion (2010) to anomaly de-
tection problems. The methodology produces set of normal and anomalous samples,
where samples from different classes have different probability distribution, which is
aligned with our definition of anomalous samples. Created problems are divided ac-
cording to (i) difficulty of finding an anomaly (easy, medium, hard, very hard), (ii)
scatter / clusteredness of the anomalies (high scatter, medium scatter, low scatter, low

clusteredness, medium clusteredness, high clusteredness), (iii) and finally with respect
to the rate of anomalies within the data {0, 0.005, 0.01, 0.05, 0.1}. The training and
testing set were created such that they have the same properties (difficulty, scatter /
clusteredness, and rate of anomalies) 2 with clustered anomalies located around the
same point. Note that the total number of unique combinations of problem’s properties
is up to 120 for each dataset. The construction of individual problems is recapitulated
in Appendix B.

The quality of the detection is measured by the usual area under ROC curve (AUC).
Since from every dataset (out of 36) up to 120 problems with different combinations of
problem’s properties can be derived, it is impossible to present all 7⇥4200 AUC values.
Tables with AUCs averaged over difficulty of detecting anomaly are in the supplemental
and cover 15 pages. They are therefore presented in an aggregated form by using critical
difference diagrams Demšar (2006) which show average rank of detectors together with
an interval in which Bonferroni-Dunn correction of Wilcoxon signed ranks test cannot
reject the hypothesis that the detectors within the interval have the same performance
as the best one. The average rank comparing AUC is calculated over all datasets on
which all detectors provided the output, following Demšar (2006) lower rank is better.
AUCs used for ranking on each dataset are an average over all combinations of problem
parameters with fixed parameter(s) of interest. For example, to compare detectors on
different rates of anomalies within the data, for each rate of anomalies the average AUC
is calculated over all combinations of difficulty and scatter. Average AUCs of different
detectors on the same dataset are ranked, and the average of ranks over datasets is the
final average rank of a detector on one rate of anomalies within the data.

To decrease noise in the data caused by statistical variations, experiments for every
combination of problem properties were repeated 100 times. This means that every de-
tector was evaluated on up to 100⇥120⇥35 = 4.32·105 problems. Benchmark datasets
created as described in Appendix B were varied between repetitions by randomly se-
lecting 50% of normal samples (but maximum of 10,000) to be in the training set and
putting the remaining data to the set. Similarly, anomalous samples were first selected
randomly from all anomalous samples to reach the desired fraction of outliers within
the data, and then randomly divided between training and testing set. The data in the
training and testing set have the same properties in terms of difficulty, clusteredness,
and fraction of anomalies within.

14 Tomáš Pevný

detector hyper-parameters
FRAC —
PCA used all components with eigenvalues greater than 0.01
KNN k = max{10, 0.03 · n}
LOF k = max{10, 0.03 · n}
1-SVM ⌫ = 0.05, � = inverse of median of L

2

distances of samples
IForest 100 trees each constructed with 256 samples
Loda all hyper-parameters optimized automatically

Table 2: Summary of detectors hyper-parameters used in experiments on stationary
data in Section 4.1.2.

4.1.1 Settings of hyper-parameters

Setting hyper-parameters in anomaly detection is generally a difficult unsolved prob-
lem unless there is validation ground truth available for parameter tuning. Wrong
parameters can cause an otherwise well designed anomaly detector to fail miserably.
Nevertheless, in this context we do not aim to solve the problem as our intention here
is primarily to compare multiple detectors against each other. For this purpose we
follow hyper-parameter setting guidelines given by the authors of the respective meth-
ods. Note that our proposed method does not require manual hyper-parameter setting.
Employed parameter settings are detailed below and in Table 2.

Settings of the number of nearest neighbors in our implementations of LOF and
KNN algorithms followed Emmott et al (2013); Breunig et al (2000) and was set to
max{10, 0.03 ·n}, where n is the number of samples in the training data. 1-SVM with
a Gaussian kernel used ⌫ = 0.05 and width of the kernel � equal to an inverse of
median L

2

distance between training data. SVM implementation has been taken from
the libSVM library Chang and Lin (2011). Our implementation of the FRAC detector
used ordinary linear least-square estimators, which in this setting does not have any
hyper-parameters. Our implementation of PCA detector based on principal component
transformation used top k components capturing more than 95% variance. IForest
(implementation taken from Jonathan et al (2014)) used parameters recommended
in Liu et al (2008): 100 trees each constructed with 256 randomly selected samples.

The number of histograms in Loda, k, was determined similarly to the number of
probes in feature selection in Somol et al (2013). Denoting f

k

(x) Loda’s output with k

histograms, the reduction of variance after adding another histogram can be estimated
as

�̂
k

=

1

n

nX

i=1

|f
k+1

(x
i

)� f
k

(x
i

)| .

Although �̂
k

! 0 as k ! 1, its magnitude is problem-dependent making it difficult
to set a threshold on this quantity. Therefore �̂

k

is normalized by �̂
1

, and the k is
determined as

argmin

k

�̂
k

�̂
1

� ⌧,

where ⌧ is the threshold. In all experiments presented in this paper, ⌧ was set to 0.01.

Unless said otherwise, Loda used equi-width histogram with the number of histogram

2 The dataset with no anomalies contained no anomalies in the training data and 10% of
anomalies in the evaluation data, which captures the case the case when the anomaly detector
is trained on clean data.

Loda: Lightweight on-line detector of anomalies 15

bins, b, determined for each histogram separately by maximizing penalized maximum
likelihood method of Birgé (2006) described briefly in Subsection 3.4. With b being set,
width of histogram bins in equi-width histograms was set to 1

b

(x
max

� x
min

).

Setting of hyper-parameters is summarized in Table 2.

4.1.2 Experimental results

Figures 1(a)-(e) show the average rank of detectors plotted against rate of anomalies
within the training set for different clusteredness of anomalies (AUCs were averaged
only with respect to the difficulty of anomalies). Since highly scattered anomalies could
not be produced from the used datasets, the corresponding plot is omitted. The number
of datasets creating problems with medium scattered anomalies is also low, and we
should not draw any conclusions as they would not be statistically sound.

For problems with low number of low-scattered and low-clustered anomalies the
data-centered detectors (KNN and LOF) are good. With increasing number of anoma-
lies in data and with their increasing clusteredness, however, the performance of data-
centered detectors appears to deteriorate (note LOF in particular). Additional investi-
gation revealed that this effect can be mitigated by hyper-parameter tweaking, specifi-
cally by increasing the number of neighbours k. In practice this is a significant drawback
as there is no way to optimize k unless labeled validation data is available.

The model-centered detectors (Loda, IForest as well as 1-SVM) appear to be com-
paratively more robust with respect to the increase in number of anomalies or their
clusteredness, even if used with fixed parameters (see Section 4.1.1.).

In terms of statistical hypothesis testing the experiments do not show marked
differences between the detectors in question. Note that in isolated cases FRAC and
1-SVM perform statistically worse than the respective best detector.

Figure 1(f) shows the detectors time to train and classify samples with respect to the
size of the problem measured by the dimension multiplied by the number of samples3.
On small problems KNN, LOF, and 1-SVM are very fast, as their complexity is mainly
determined by the number of samples, but Loda is not left behind too much. As the
size of problems gets bigger Loda quickly starts to dominate all detectors followed by
PCA. Surprisingly IForest with low theoretical complexity had the highest running
times. Since its running time is almost independent of the problem size, it is probably
due to large multiplication constant absorbed in big O notation.

Comparing detectors by the performance / time complexity ratio, we recommend
KNN for small problems with scattered anomalies, while for bigger problems and prob-
lems with clustered anomalies we recommend the proposed Loda, as its performance
is similar to IForest but it is much faster.

The investigation of problems on which Loda is markedly worse than KNN revealed
that Loda performs poorly in cases where the support of the probability distribution of
nominal class is not convex and it encapsulates the support of the probability distribu-
tion of the anomalous class. A typical example is a “banana” dataset in Figure 2 showing
isolines at false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of Loda and KNN. Isolines show
that Loda has difficulty modeling the bay inside the arc. Although the adopted con-
struction of problems from UCI datasets (see Appendix B for details) aimed to create

3 Because all algorithms have not used any search for hyper-parameters, Loda used fixed
number of histogram being equal to

p
n, where n is the number samples.

16 Tomáš Pevný

0
(3)

0.005
(2)

0.01
(5)

0.05
(4)

0.1
(1)

2

4

6

8

10

rate of anomalies

av
er

ag
e

ra
nk

(a) medium scatter

0
(24)

0.005
(14)

0.01
(18)

0.05
(24)

0.1
(21)

3

4

5

rate of anomalies

av
er

ag
e

ra
nk

(d) low scatter

0
(31)

0.005
(15)

0.01
(19)

0.05
(30)

0.1
(29)

3

4

5

rate of anomalies

av
er

ag
e

ra
nk

(c) low clusteredness

0
(20)

0.005
(13)

0.01
(14)

0.05
(20)

0.1
(17)

3

4

5

rate of anomalies

av
er

ag
e

ra
nk

(d) medium clusteredness

0
(7)

0.005
(8)

0.01
(9)

0.05
(7)

0.1
(3)

2

4

6

rate of anomalies

av
er

ag
e

ra
nk

(e) high clusteredness

103 104 105 106 107
10�2

101

104

dataset size

ti
m

e
in

se
co

nd
s

(f) time to train and classify

FRAC PCA KNN LOF iForest 1-SVM LODA

Fig. 1: Figures (a)-(e) show the average rank of detectors with respect to the rate
of anomalies within the training data for various levels of clusteredness. The average
rank is calculated by averaging rank of detectors over datasets, where the rank of
detectors on a single dataset compares AUCs. The small number in parentheses shows
the number of datasets from which benchmarking problems with a given combination
of clusteredness and rate of anomalies were created. Critical difference is shown as a
light grey — it is the area in which a in which Bonferroni-Dunn correction of Wilcoxon
signed ranks test cannot reject the hypothesis that the detectors within has the same
performance as the best detector. Figure (f) shows the time to train the detector and
classify all testing samples.

Loda: Lightweight on-line detector of anomalies 17

�6 �4 �2 0 2 4 6 8

�5

0

5

(a) Loda

�6 �4 �2 0 2 4 6 8

�5

0

5

(b) k-nearest neighbor

Fig. 2: Isolines at false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of Loda and k-nearest
neighbor detector on a banana dataset.

0 2 4 6 8

0

2

4

6

8

(a) Loda on Two Gaussians
0 2 4 6 8

0

2

4

6

8

(b) Local outlier factor on Two Gaussians

Fig. 3: Isolines at false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of Loda and Local Outlier
Factor on a dataset composed of two Gaussians with different standard deviations.

these difficult datasets, Loda’s performance was overall competitive to other, more
difficult detectors.

Breunig et al (2000) has criticized KNN, which has performed the best on clean
training data, for its inability to detect local outliers occurring in datasets with ar-
eas of very different densities. Figure 3 shows again isolines at false positive rates
{0.01, 0.05, 0.1, 0.2, 0.4} of Loda and LOF (designed to detect local outliers) on a data
generated by two Gaussians with very different standard deviations (a typical example
of such data). Loda’s isolines around the small compact cluster (lower left) are very
close to each other, whereas isolines of the loose cluster (upper right) are further away
which demonstrates that Loda is able do detect local outliers similarly to LOF. LOF’s
wiggly isolines also demonstrates the over-fitting to the training data.

Figure 4 visualizes the average rank of Loda with equi-width, equi-depth, and on-
line Ben-Haim and Tom-Tov (2010) histograms on different rates of anomalies within
the data. Although on almost all rates Friedman’s statistical test accepted the hypothe-

18 Tomáš Pevný

0
(35)

0.005
(22)

0.01
(29)

0.05
(35)

0.1
(32)

1.6

1.8

2

2.2

2.4

2.6

rate of anomalies

av
er
ag

e
ra
n
k

equi-width equi-area Online Bon.-Dunn

Fig. 4: Average rank of Loda with different types of histograms with respect to the
rate of anomalies within the training data. The rank of three compared detectors is
calculated for each problem separately, and then the average over all problems with a
given rate of anomalies in the training data is shown in the graph.

sis that all three versions of Loda performs the same, Loda with equi-width histograms
is obviously better. This is important because equi-width histograms can be efficiently
constructed from a stream of data if the bin-width is determined, for example by using
sample data.

4.2 Streamed and non-stationary data

This section compares Loda with floating-window histogram and two alternating his-
tograms (see Section 3.4) to Half-Space Trees (HS-Trees) Tan et al (2011) (imple-
mentation taken from Tan (2014)). On-line version of 1-SVM was omitted from the
comparison due to the difficulties with hyper-parameter setting and inferior perfor-
mance when algorithms were compared in the batch learning. The comparison is made
on seven datasets: Shuttle, Covertype, HTTP and SMTP data from kdd-cup 99. HTTP
and SMTP data are used in two variants: (i) with all 41 features (called HTTP - full
and SMTP - full) and (ii) with 3 features (called HTTP - 3 and SMTP - 3) used in Tan
et al (2011).4

In every repetition of an experiment the testing data were created by replacing
maximum of 1% of randomly selected normal samples by randomly selected anoma-
lous samples. Order of normal samples has not been permuted in order to preserve data
continuity. Thus, the variation between repetitions comes from (i) the position to where
anomalous samples were inserted and (ii) from the selection of anomalous samples to
be mixed in. To study the effect of clustered anomalies, anomalies were first selected
to form clusters in space (as in the previous section) and then they replaced sequences
of normal data of the same size. By this process data-streams contained anomalies
clustered in time and space of sizes {1, 4, 16} (this quantity is hereafter called clus-

4 The original publication Tan et al (2011) does not specify which three features from kdd-
cup dataset were used, but datasets used in the publication are available at Tan (2014).

Loda: Lightweight on-line detector of anomalies 19

continuous two histograms HS-Trees
dataset AUC time AUC time AUC time

cl
us

te
re

dn
es

s
=

1 covertype 0.987 4.36 0.985 3.04 0.980 19.00
http - 3 0.995 7.42 0.989 5.91 0.993 37.82
http 0.998 7.84 0.983 5.68 0.995 35.30
shuttle 0.992 0.54 0.992 0.39 0.999 4.90
smtp 0.994 1.25 0.989 1.01 0.998 8.25
smtp -3 0.890 1.52 0.883 1.27 0.915 8.38
smtp + http 0.992 6.51 0.987 5.88 0.998 42.56

cl
us

te
re

dn
es

s
=

4 covertype 0.972 4.42 0.989 3.00 0.980 19.05
http - 3 0.992 7.51 0.994 5.24 0.983 40.17
http 0.991 8.40 0.993 6.00 0.990 34.87
shuttle 0.980 0.49 0.994 0.41 0.999 5.02
smtp 0.970 1.34 0.994 1.06 0.996 8.58
smtp -3 0.871 1.35 0.886 1.11 0.914 8.31
smtp + http 0.989 9.65 0.993 7.99 0.998 42.70

cl
us

te
re

dn
es

s
=

16 covertype 0.937 4.42 0.989 3.01 0.980 19.33
http -3 0.987 6.71 0.996 4.95 0.980 40.84
http 0.982 8.43 0.993 6.27 0.987 34.52
shuttle 0.943 0.51 0.994 0.42 0.999 5.12
smtp 0.947 1.34 0.993 1.06 0.995 8.63
smtp - 3 0.863 1.38 0.882 1.17 0.915 8.35
smtp + http 0.983 7.99 0.995 4.80 0.998 42.20

Table 3: AUCs of Loda and HS-Trees Tan et al (2011) on streaming problems with
various levels of clusteredness.

teredness). Experiments on each dataset for every value of clusteredness of anomalies
were repeated 100 times.

HS-Trees used recommended configuration of 50 trees of depth 15 with minimum of
20 samples in leaf node. Loda’s configuration, namely number of histograms and bins
were optimized on first 256 samples in every repetition, thus there were no parameters
to be set manually. Both algorithms used a window of length 256 samples, which is the
hard-coded length in implementation of HS-Trees provided by authors.

Table 3 shows AUCs and average time to process samples of Loda and that of
HS-Trees. We can see that both algorithms deliver nearly the same performance, while
Loda is on average 7–8 times faster (the time complexity is treated in more detail in
the next subsection). Figure 5 shows AUCs on segments of 120000 continuous samples
on datasets Covertype, HTTP, HTTP - 3, and SMTP + HTTP with clusters of 16
anomalies (omitted datasets did not contained enough samples). Since all AUCs of
all three detectors remains stable, it can be concluded that all detectors equally well
combat the concept drift in datasets.

Further investigation of results reveals that Loda with two alternating histograms
(construction similar to that in HS-Trees) is more robust to clustered anomalies than
Loda with continuous histogram. Our explanation of this phenomenon is that clustered
anomalies are classified most of the time by histograms built on clean data without
anomalies, while polluted histograms classify most of the time clean data, which is
not influenced by anomalies in training data. These results demonstrate that the right
choice of histogram for non-stationary data should depend on the type of anomalies
(time and space clustered vs. scattered).

20 Tomáš Pevný

1 2 3
0

0.5

1

time segment

A
U

C
covertype

2 4 6

time segment

http

2 4

time segment

http-3

2 4 6

time segment

smtp + http

continuous Loda two histograms Loda HS-Trees

Fig. 5: AUCs of Loda with continuous histogram, Loda with two alternating histograms,
and HS-Trees on segments of continuous 12000 samples from the stream. AUCs in every
segment is an average from 100 repetitions.

4.3 Big data

The demonstration of Loda’s ease of handling big data is done on a URL dataset Ma
et al (2009) containing 2.4 million samples with 3.2 million features. Normal samples
contain features extracted from random URLs, while anomalous samples have features
extracted from links in spam e-mails during 120 days at rate 20,000 samples per day
(see Ma et al (2009) for dataset details). Due to the high number of “anomalous”
samples and cleanliness of normal samples, the dataset belongs to a category of one-
class problems where the goal is to separate class of legitimate URLs from others.

Since the data are presented in batches of 20000 samples per day, all methods
evaluated in Subsection 4.1 can be theoretically applied by training them on normal
samples from the previous day, i.e. detectors classifying samples from lth day are trained
on normal samples from the (l � 1)

th day. The problem is that the computational
complexity effectively prevents a direct application of FRAC, 1-SVMs, PCA, LOF,
and KNN, as methods would not finish in reasonable time. The only methods that
can be used without modification is Loda and IForest. Their settings were same as in
Subsection 4.1 with the difference that (i) Loda used 500 projections and histograms
bins were optimized on data from day zero and then stay fixed; (ii) number of trees
within IForest was increased to 1000. Rows labeled 3.2 · 106 in Table 4 show AUCs,
average rank over 120 days, and the average time to classify new samples and retrain
the detectors. We can see that Loda was not only significantly better (AUC of IForest
is close to the detector answering randomly), but also more than 15 times faster.

To reduce the computational complexity such that other algorithms can be used,
the original data of dimension 3.2 million were projected onto 500 dimensional space
with a randomly generated matrix W 2 R3.2·106

,500, W
ij

⇠ N(0, 1). According to the
Johnson-Lindenstrauss lemma, L

2

distances between points should be approximately
preserved, therefore most detectors should work. Hyper-parameters of all detectors
were set as in Subsection 4.1.1. AUCs of all detectors on every day are shown in Fig-
ure 6, and their summaries again in Table 4. On this new dataset the best algorithm
was the KNN algorithm followed by PCA and Loda. These results are consistent with
those in Subsection 4.1.2, where KNN detector was generally good if trained on clean
data. The good performance of PCA can be explained by projected data being close to

Loda: Lightweight on-line detector of anomalies 21

0 20 40 60 80 100 120

0.4

0.6

0.8

1

Day

A
U
C

FRAC PCA KNN LOF

IForest 1-SVMs Loda

Fig. 6: AUCs of detectors on URL
dataset with respect to time. AUCs of
PCA, KNN, IForest, and 1-SVMs is
on dataset projected to 500 dimension.
AUCs of Loda are on the full dataset
of dimension 3.2 million.

d detector rank AUC time

5
0
0

KNN 1.596 0.818 140.5s
PCA 2.758 0.803 1.4s
Loda 3.067 0.795 1.16s
FRAC 3.958 0.789 283.8s
IForest 4.733 0.776 6.4s
LOF 4.987 0.771 307.5s
1-SVM 6.900 0.528 711.4s

3
.2

·1
0
6

Loda 1.025 0.795 21.6s
IForest 1.975 0.488 369s

Table 4: Average rank (caption rank),
average AUC (caption AUC), and aver-
age time to classify and update detec-
tors on 20 000 samples (caption time)
on the full problem (d = 3.2 · 106) and
on the reduced problem (d = 500). The
average rank is an average of detector’s
rank over 120 days.

1 20 40 60 80 100

10�4

10�2

100

number of samples

ti
m

e
in

se
co

nd
s

(a) input dimension d = 100

1 20 40 60 80 100

10�4

10�2

100

number of samples ⇥103

ti
m

e
in

se
co

nd
s

(b) input dimension d = 10000

Loda KNN LOF HS-Trees PCA

Fig. 7: Average time of classification and update of PCA, KNN, LOF, and Loda de-
tectors against number of observed samples. Left and right figures show times for the
problem of dimension 100 and 10000 respectively.

multivariate normal distribution, although the Lilliefors’ test has rejected the hypoth-
esis that marginals follow the normal distribution with 85% rate. Notice that Loda’s
execution time was more than 100 times faster than KNN, as its time to classify and
update on samples from one day was 1.16s on average, while that of KNN was 140s.

22 Tomáš Pevný

4.4 Time complexity

Loda was primarily designed to have low computational complexity in order to effi-
ciently process large data and data-streams. This feature is demonstrated below, where
times to classify one sample with simultaneous update of the detector is compared for
PCA, KNN, LOF, HS-Trees, and Loda with continuous histogram5. All settings of indi-
vidual algorithms were kept the same as in previous experiments. Loda’s time includes
optimization of hyper-parameters on first 256 samples of the stream as described in
Section 4.1.1 (Loda used on average 140 projections with histograms having 16 bins
and sliding window of length 256).

The comparison was made on 100,000 artificially generated samples of dimensions
100 and 10000. As the interest here is on throughput, the details of data generation
are skipped as not being relevant for the experiment. The results are summarized in
Figure 7 showing the average time to classify and update one sample against the number
of observed samples. The experiment was stopped if the processing of 1000 samples
took more than half an hour causing some graphs to be incomplete. The graph for the
PCA detector is missing entirely in the left figure 7, because processing of 1000 samples
took more than 15 hours (109s per one sample). Both graphs demonstrate that Loda’s
efficiency is superior to all other detectors, as it is two order of magnitudes faster than
the fastest algorithms from the prior art. This experiment highlights Loda’s suitability
for efficiently handling data-streams.

4.5 Robustness to missing variables

As mentioned in Section 3, Loda with sparse projections can classify and learn from
samples with missing variables. This feature was evaluated under the “missing at ran-
dom” scenario, where missing variables are independent of the class membership. In
every repetition of an experiment, before the data was divided into training and testing
sets, {0, 0.01, 0.02, 0.04, . . . , 0.20} fraction of all variables in data matrices were made
missing (set to NaN). Consequently, missing variables were equally present in sets on
which Loda were trained and evaluated. The robustness was evaluated on datasets cre-
ated in the same way as in Subsection 4.1 with clean training sets and 10% of anomalies
in the test sets. Loda’s hyper-parameters were determined automatically as described
in Subsection 4.1.1.

The effect of missing features on detector’s AUC is summarized in Figure 8 showing
the highest missing rate at which Loda had the AUC higher than 99% of that on the
data without missing variables (blue bars). For a large set of problems the tolerance
is high and more than 10% of missing variables are tolerated with negligible impact
on the AUC. There are also exceptions, e.g. magic telescope, page-blocks, wine, etc,
where the robustness is very small, but we have failed to find a single cause for this
fragility. Interestingly, the robustness is independent on the dimension of the problem
and the success with which outliers are detected. The exception is datasets on which
the detection of outliers is poor (AUC is around 0.5), which is caused by the fact that
missing some variables cannot generally improve or decrease already bad AUC. The
same figure also shows the rate of missing variables at which Loda stops to provide

5 SVM and FRAC were omitted, as their on-line adaptation is not straight-forward. Al-
though the implementation of HS-Trees is in Java, the binary (jar) reports time to process
samples, which was used in this comparison.

Loda: Lightweight on-line detector of anomalies 23

a

b

a

l

o

n

e

(

1

0

)

b

l

o

o

d

-

t

r

a

n

s

f

u

s

i

o

n

(

4

)

b

r

e

a

s

t

-

c

a

n

c

e

r

-

w

i

s

c

o

n

s

i

n

(

3

0

)

b

r

e

a

s

t

-

t

i

s

s

u

e

(

9

)

c

a

r

d

i

o

t

o

c

o

g

r

a

p

h

y

(

2

7

)

e

c

o

l

i

(

7

)

g

i

s

e

t

t

e

(

4

9

7

1

)

g

l

a

s

s

(

1

0

)

h

a

b

e

r

m

a

n

(

3

)

i

o

n

o

s

p

h

e

r

e

(

3

3

)

i

r

i

s

(

4

)

i

s

o

l

e

t

(

6

1

7

)

l

e

t

t

e

r

-

r

e

c

o

g

n

i

t

i

o

n

(

6

1

7

)

l

i

b

r

a

s

(

9

0

)

m

a

d

e

l

o

n

(

5

0

0

)

m

a

g

i

c

-

t

e

l

e

s

c

o

p

e

(

1

0

)

m

i

n

i

b

o

o

n

e

(

5

0

)

m

u

l

t

i

p

l

e

-

f

e

a

t

u

r

e

s

(

6

4

9

)

m

u

s

k

-

2

(

1

6

6

)

p

a

g

e

-

b

l

o

c

k

s

(

1

0

)

p

a

r

k

i

n

s

o

n

s

(

2

2

)

p

e

n

d

i

g

i

t

s

(

1

6

)

p

i

m

a

-

i

n

d

i

a

n

s

(

8

)

s

o

n

a

r

(

6

0

)

s

p

e

c

t

-

h

e

a

r

t

(

4

4

)

s

t

a

t

l

o

g

-

s

a

t

i

m

a

g

e

(

3

6

)

s

t

a

t

l

o

g

-

s

e

g

m

e

n

t

(

1

8

)

s

t

a

t

l

o

g

-

v

e

h

i

c

l

e

(

1

8

)

s

y

n

t

h

e

t

i

c

-

c

o

n

t

r

o

l

-

c

h

a

r

t

(

6

0

)

v

e

r

t

e

b

r

a

l

-

c

o

l

u

m

n

(

6

)

w

a

l

l

-

f

o

l

l

o

w

i

n

g

-

r

o

b

o

t

(

2

4

)

w

a

v

e

f

o

r

m

-

1

(

2

1

)

w

a

v

e

f

o

r

m

-

2

(

2

1

)

w

i

n

e

(

1

3

)

y

e

a

s

t

(

8

)

0

5 · 10�2

0.1

0.15

0.2

ra
te

o
f
m
is
si
n
g
v
a
ri
a
b
le
s

output on all data preserved AUC

0

0.2

0.4

0.6

0.8

1

A
U
C

AUC on all features

Fig. 8: Light grey bars show the maximum rate of missing variables at which Loda
had AUC greater than 0.99⇥AUC on data without missing variables. Dark grey bars
show the maximum rate of missing variables at which Loda provided answers for all
samples. If dark grey are covered by light grey bars, then both maximum rates were
equal. The dashed line shows AUC of Loda on data without missing variables.

output (red bars). We can see that this rate is usually much higher than the rate at
which Loda retains its AUC.

4.6 Identification of features responsible for an outlier

Explaining the causes of an anomaly detection is relatively new field and there is not
yet an established methodology to evaluate and compare the quality of algorithms,
hence, the following is adopted here. It starts by calculating the average of Loda’s
feature scores according to (4) over all anomalous samples in the testing set. Once
the scores of individual features are known, they are sorted in decreasing order, which
means that features in which anomalous samples deviates the most should be the first.
Then, Loda with dense projections utilizing only first d0 features is used and its AUC
is recorded (d0 has varied from 2 to min(100, d)). If the feature relevance score (4) is
meaningful, then Loda that uses first couple features (low d0) should have the same or
better AUC than Loda that uses all features. This is because all testing problems were
originally classification problems which means that anomalous samples were generated
by the same probability and hence similar features should be responsible for their
anomalousness. Experiments were performed on clean training datasets and all other
experimental settings were kept same as in Subsection 4.1.

Figure 9 shows the average AUC of Loda with dense projections using the most
important d

min

features, where d
min

is the least such that AUC by using only first

24 Tomáš Pevný

a

b

a

l

o

n

e

(

1

1

)

b

r

e

a

s

t

-

c

a

n

c

e

r

-

w

i

s

c

o

n

s

i

n

(

3

1

)

b

r

e

a

s

t

-

t

i

s

s

u

e

(

1

0

)

c

a

r

d

i

o

t

o

c

o

g

r

a

p

h

y

(

2

8

)

e

c

o

l

i

(

8

)

g

i

s

e

t

t

e

(

4

9

7

2

)

g

l

a

s

s

(

1

1

)

h

a

b

e

r

m

a

n

(

4

)

i

o

n

o

s

p

h

e

r

e

(

3

4

)

i

r

i

s

(

5

)

i

s

o

l

e

t

(

6

1

8

)

l

e

t

t

e

r

-

r

e

c

o

g

n

i

t

i

o

n

(

6

1

8

)

l

i

b

r

a

s

(

9

1

)

m

a

d

e

l

o

n

(

5

0

1

)

m

a

g

i

c

-

t

e

l

e

s

c

o

p

e

(

1

1

)

m

i

n

i

b

o

o

n

e

(

5

1

)

m

u

l

t

i

p

l

e

-

f

e

a

t

u

r

e

s

(

6

5

0

)

m

u

s

k

-

2

(

1

6

7

)

p

a

g

e

-

b

l

o

c

k

s

(

1

1

)

p

a

r

k

i

n

s

o

n

s

(

2

3

)

p

e

n

d

i

g

i

t

s

(

1

7

)

p

i

m

a

-

i

n

d

i

a

n

s

(

9

)

s

o

n

a

r

(

6

1

)

s

p

e

c

t

-

h

e

a

r

t

(

4

5

)

s

t

a

t

l

o

g

-

s

a

t

i

m

a

g

e

(

3

7

)

s

t

a

t

l

o

g

-

s

e

g

m

e

n

t

(

1

9

)

s

t

a

t

l

o

g

-

v

e

h

i

c

l

e

(

1

9

)

s

y

n

t

h

e

t

i

c

-

c

o

n

t

r

o

l

-

c

h

a

r

t

(

6

1

)

v

e

r

t

e

b

r

a

l

-

c

o

l

u

m

n

(

7

)

w

a

l

l

-

f

o

l

l

o

w

i

n

g

-

r

o

b

o

t

(

2

5

)

w

a

v

e

f

o

r

m

-

1

(

2

2

)

w

a

v

e

f

o

r

m

-

2

(

2

2

)

w

i

n

e

(

1

4

)

y

e

a

s

t

(

9

)

0

0.5

1

A
U
C

AUC on explained fea. AUC on all fea. fraction of fea.

fr
ac
ti
on

of
fe
at
u
re
s

Fig. 9: AUC of Loda with dense projections on features selected according to relevance
provided by Loda (captioned “AUC on explained fea.”) and AUC of Loda with sparse
projections on all features (caption “all”). The curve traversing bars shows the relative
number of features selected according to Loda’s relevance.

d
min

features is higher than 0.99 times the best AUC. On average only 25% of features
are needed to identify outliers with AUC comparable or better than that of Loda with
all features. This result confirms that Loda is able to identify features causing the
anomaly.

It is interesting that for some problems (e.g. cardiotocography, glass, spect-heart,
yeast, etc.) the improvement in the AUC is significant. This can be explained by the
curse of dimensionality as anomaly detectors are, by their nature, more sensitive to
noise generated by non-informative features.

5 Conclusion

This paper has focused on creating a detector of anomalous samples being able to
quickly process enormous amounts of data produced in many contemporary domains.
Although the presented detector (Loda) was aimed to process streams of data with a
constantly changing behavior, it has been compared to the state of the art in settings
where all data are available at once and they can fit into the memory. The rationale
behind was to compare Loda under various conditions differing by the rate of anoma-
lies within the data, their clusteredness / scatterness to state of the art detectors, even
though they are not applicable for intended scenario. This comparison, which scale is to
our knowledge the biggest so far published has shown that Loda’s accuracy measured by
area under ROC curve does not lag behind more sophisticated detectors. Moreover, it
has revealed conditions under which particular type of detectors with the recommended

Loda: Lightweight on-line detector of anomalies 25

setting of its parameters excels. Based on it we can conclude that data-centered detec-
tors such as kth-nearest neighbor or Local Outlier Factor with recommended setting for
k are good for problems with a few number of scattered anomalies. Contrary, for prob-
lems with clustered anomalies and / or with higher rate of anomalies within the data
(more than 1%), the model-centered detectors such as the proposed Loda, 1-SVM, and
Isolation Forest are more suitable. Loda was also the only evaluated method capable
to process data with 3.2 millions features in a reasonable time without any modifica-
tion. Last but not least, it was shown that Loda is well suited for intended domains,
where data are in the form of non-stationary streams with samples observed just once,
classified, and the detector is updated. The comparison to state of the art Half-Space
Trees method on seven problems of this type showed that both detectors have nearly
the same detection performance, but Loda is on average 7-8 times faster.

Loda has practically demonstrated that an ensemble of anomaly detectors as weak
as one-dimensional histograms yields to a strong anomaly detector. Loda’s diversifi-
cation of weak anomaly detectors relies on sparse random projections, which can be
viewed as a random sub-space sampling. It is shown that this type of diversification
gives the ensemble capability to explain why a scrutinized sample is anomalous and to
be robust against missing values. A thorough evaluation showed that detectors employ-
ing only features explaining anomalies have equal or better performance than detectors
using all features, which shows that features explaining anomalies were selected cor-
rectly (on average 25% of features explained the anomaly). The similar evaluation
showed that the ensemble keeps on most problems its detection performance even if
more than 10% of features are missing.

To conclude, this paper has shown that there is no single detector excelling on all
type of problems, as different detectors are suitable for different types of problems.
The biggest advantage of the proposed Loda with respect to others is its overall good
performance and very good speed to detection performance ratio, as it is order of
magnitude faster than prior art on big problems while its detection performance is
comparable to them. Besides, it can explain causes of anomalies and it is robust to
missing variables in data.

References

Aggarwal CC (2013a) Outlier Analysis. Springer New York
Aggarwal CC (2013b) Outlier ensembles: position paper. ACM SIGKDD Explorations

Newsletter 14(2):49–58
Akhilomen J (2013) Data mining application for cyber credit-card fraud detection

system. In: Perner P (ed) Advances in Data Mining. Applications and Theoretical
Aspects, LNCS, vol 7987, Springer, pp 218–228

Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, pp 459–468

Bay SD, Schwabacher M (2003) Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
New York, NY, USA, KDD ’03, pp 29–38, DOI 10.1145/956750.956758, URL http:
//doi.acm.org/10.1145/956750.956758

26 Tomáš Pevný

Ben-Haim Y, Tom-Tov E (2010) A streaming parallel decision tree algorithm. The
Journal of Machine Learning Research 11:849–872

Bentley JL (1975) Multidimensional binary search trees used for associative searching.
Communication of ACM 18(9):509–517

Birgé RY Lucien (2006) How many bins should be put in a regular histogram. ESAIM:
Probability and Statistics 10:24–45

Breunig MM, Kriegel H, Ng R, Sander J (2000) Lof: identifying density-based local
outliers. SIGMOD Record 29(2):93–104

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: A survey. ACM Com-
puting Surveys (CSUR) 41(3):1–58

Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2:27:1–27:27, software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cormode G, Muthukrishnan S (2005) An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms 55(1):58–75

Dang X, Micenková B, Assent I, Ng R (2013) Local outlier detection with interpreta-
tion. In: Machine Learning and Knowledge Discovery in Databases, LNCS, vol 8190,
Springer, pp 304–320

Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over
sliding windows. SIAM Journal on Computing 31(6):1794–1813

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7:1–30

Donjerkovic D, Ioannidis YE, Ramakrishnan R (2000) Dynamic histograms: Capturing
evolving data sets. In: Proceedings of the International Conference on Data Engi-
neering, IEEE Computer Society Press; 1998, pp 86–86

Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of
anomaly detection benchmarks from real data. In: Proceedings of the ACM SIGKDD
Workshop on Outlier Detection and Description, ACM, ODD ’13, pp 16–21

Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.
uci.edu/ml

Freund Y, Schapire RE, et al (1996) Experiments with a new boosting algorithm. In:
ICML, vol 96, pp 148–156

Gama J, Pinto C (2006) Discretization from data streams: applications to histograms
and data mining. In: Proceedings of the 2006 ACM symposium on Applied comput-
ing, pp 662–667

Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into
probability estimates. In: Sixth International Conference on Data Mining, IEEE, pp
212–221

Guha S, Koudas N, Shim K (2006) Approximation and streaming algorithms for his-
togram construction problems. ACM Transactions on Database Systems pp 1–42

Harmeling S, Dornhege G, Tax D, Meinecke F, Muller K (2006) From outliers to
prototypes: Ordering data. Neurocomputing 69(13-15):1608–1618

Ho TK (1998) The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8):832–844

Johnson WB, Lindenstrauss J (1984) Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics 26(189-206):1

Jonathan, Aryal S, Zhou GT (2014) Implementation of isolation forest. http://
sourceforge.net/projects/mass-estimation/

Loda: Lightweight on-line detector of anomalies 27

Keller F, Muller E, Bohm K (2012) HiCS: high contrast subspaces for density-based
outlier ranking. In: Proceedings of International Conference on Data Engineering
(ICDE), IEEE, pp 1037–1048

Kivinen J, Smola AJ, Williamson R (2004) Online Learning with Kernels. IEEE Trans-
actions on Signal Processing 52(8):2165–2176

Knorr E, Ng RT (1999) Finding intensional knowledge of distance-based outliers. In:
Proceedings of the International Conference on Very Large Data Bases, pp 211–222

Kriegel HP, Zimek A (2008) Angle-based outlier detection in high-dimensional data.
In: Proceedings of the 14th international conference on Knowledge discovery and
data mining, ACM, pp 444–452

Kuncheva L (2004) Combining pattern classifiers: methods and algorithms
Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of

the 11th international conference on Knowledge discovery and data mining, vol 21,
pp 157–166

Li P (2007) Very sparse stable random projections for dimension reduction in l ↵

(0 < ↵ 2)) norm. Proceedings of the 13th international conference on Knowledge
discovery and data mining p 440

Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: Eighth IEEE International
Conference on Data Mining, IEEE, pp 413–422

Ma J, Saul LK, Savage S, Voelker GM (2009) Identifying suspicious urls: an applica-
tion of large-scale online learning. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ACM, pp 681–688

Muller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace pro-
jections for outlier ranking. In: 27th International Conference on Data Engineering
(ICDE), IEEE, pp 434–445

Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of het-
erogeneous detectors on random subspaces. In: Database Systems for Advanced Ap-
plications, Springer, pp 368–383

Noto K, Brodley C, Slonim D (2012) FRaC: a feature-modeling approach for semi-
supervised and unsupervised anomaly detection. Springer US, vol 25, pp 109–133

Pevný T, Rehák M, Grill M (2012) Detecting anomalous network hosts by means of
pca. In: IEEE International Workshop on Information Forensics and Security, pp
103–108

Pham N, Pagh R (2012) A near-linear time approximation algorithm for angle-based
outlier detection in high-dimensional data. In: Proceedings of the 18th international
conference on Knowledge discovery and data mining, ACM, pp 877–885

Pokrajac D, Lazarevic A, Latecki JL (2007) Incremental Local Outlier Detection for
Data Streams. In: 2007 IEEE Symposium on Computational Intelligence and Data
Mining, IEEE, pp 504–515

Poosala V, Haas PJ, Ioannidis YE, Shekita EJ (1996) Improved histograms for selec-
tivity estimation of range predicates. SIGMOD Records 25(2):294–305

Rondina J, Hahn T, de Oliveira L, Marquand A, Dresler T, Leitner T, Fallgatter A,
Shawe-Taylor J, Mourao-Miranda J (2014) SCoRS - a method based on stability
for feature selection and mapping in neuroimaging. IEEE Transactions on Medical
Imaging 33(1):85–98

Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating
the support of a high-dimensional distribution. Neural Computation 13(7):1443–1471

Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rank-
ings and outlier scores. In: Proceedings of the 12th SIAM International Conference

28 Tomáš Pevný

on Data Mining, pp 1047–1058
Shyu Ml, Chen Sc, Sarinnapakorn K, Chang L (2003) A novel anomaly detection scheme

based on principal component classifier. In: Proceedings of the IEEE Foundations
and New Directions of Data Mining Workshop, pp 172–179

Somol P, Grim J, Pudil P (2011) Fast dependency-aware feature selection in very-high-
dimensional pattern recognition. In: International Conference on Systems, Man, and
Cybernetics, IEEE, pp 502–509

Somol P, Grim J, Filip J, Pudil P (2013) On stopping rules in dependency-aware feature
ranking. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, Springer, pp 286–293

Šourek G, Kuzelka O, Zeleznỳ F (2013) Predicting top-k trends on twitter using
graphlets and time features. ILP 2013 Late Breaking Papers pp 52–57

Spinosa EJ, Carvalho LF, , Gama J (2009) Novelty detection with application to data
streams. Intelligent Data Analysis 13(3):405–422

Sricharan K, Hero AO (2011) Efficient anomaly detection using bipartite k-nn graphs.
In: Advances in Neural Information Processing Systems 24, pp 478–486

Tan SC (2014) Implementation of half-space trees.
HTTPs://sites.google.com/site/analyticsofthings/
recent-work-fast-anomaly-detection-for-streaming-data

Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for streaming data.
In: Proceedings of the Twenty-Second international joint conference on Artificial
Intelligence-Volume Volume Two, AAAI Press, pp 1511–1516

Tax DMJ, Duin RPW (2004) Support vector data description. Machine learning
54(1):45–66

Tax DMJ, Laskov P (2003) Online svm learning: from classification to data description
and back. In: 13th Workshop on Neural Networks for Signal Processing, IEEE, pp
499–508

de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimen-
sional space. In: 10th International Conference on Data Mining, IEEE, pp 128–137

Yeung DY, Chow C (2002) Parzen-window network intrusion detectors. In: Proceedings
of 16th International Conference on Pattern Recognition, vol 4, pp 385–388

Zhang H (2004) The optimality of naive bayes. In: Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference

Zhu J, Hastie T (2005) Kernel logistic regression and the import vector machine. Jour-
nal of Computational and Graphical Statistics 14(1):185–205

Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Analysis and Data Mining 5(5):363–387

A on-line histogram

The on-line histogram from Ben-Haim and Tom-Tov (2010) approximates the distribution of
data by using a set of pairs H = {(z

1

,m
1

), . . . , (zb,mb)}, where zi 2 R and mi 2 N, where
b is an upper bound on the number of histogram bins. It is assumed that every point zi is
surrounded by mi points, of which half is to the left and half is to the right to zi. Consequently,
the number of points in the interval [zi, zi+1

] is equal to mi+mi+1

2

, and the probability of point
z 2 (zi, zi+1

) is estimated as a weighted average.
The construction of the set H is described in Algorithm 3. It starts with H = {} being

an empty set. Upon receiving a sample, z = xTw, it looks if there is a pair (zi,mi) in H such
that z is equal to zi. If so, the corresponding count mi is increased by one. If not, a new pair

Loda: Lightweight on-line detector of anomalies 29

Algorithm 3: Algorithm constructing approximation of the probability distri-
bution of the data {x

i

2 Rd}n
i=1

projected on the vector w 2 Rd.

Input: sample x 2 Rd, w 2 Rd ;
Output: set of pairs H = {(z

1

,m
1

), . . . , (zb,mb)},
initialize H = {}, z

min

= +1, z
max

= �1. ;
for j 1 to n do

z = xT

j w;
z
min

= min{z
min

, z};
z
max

= min{z
max

, z};
if 9(zi == z) then

mi = mi + 1;
continue

else
H = H [{z, 1}

end
if |H| > b then

Sort pairs in H such that z
1

< z
2

< . . . < zb+1

;
Find i minimizing zi+1

� zi ;
Replace pairs (zi,mi), (zi+1

,mi+1

), by the pair
✓
zimi + zi+1

mi+1

mi +mi+1

,mi +mi+1

◆

end
H = H [{(z

min

, 0), (z
max

, 0)};
Sort pairs in H such that z

min

< z
1

< z
2

< . . . < z
max

;

Algorithm 4: Algorithm returning approximate of probability density in point
x projected on the vector w.

Input: sample x 2 Rd, w 2 Rd, set of pairs H = {(z
1

,m
1

), . . . , (zb,mb)} ;
Output: return estimate of the probability density p(x).;
H = H [{(z

min

, 0), (z
max

, 0)};
Sort pairs in H such that z

min

< z
1

< z
2

< . . . < z
max

;
z = xTw;
if 9(i|zi < z zi+1

) then
return p(x) =

zimi+zi+1

mi+1

2M(zi+1

�zi)
;

else
return invalid;

end

(z, 1) is added to H. If the size of H exceeds the maximal number of bins b, the algorithm
finds the two closest pairs (zi,mi), (zi+1

,mi+1

), and replaces them with an interpolated pair⇣
zimi+zi+1

mi+1

mi+mi+1

,mi +mi+1

⌘
. Keeping zi sorted makes all the above operations efficient.

The estimation of the probability density in point z = xTw is described in Algorithm 4.
Assuming the pairs in H are sorted according to zi, the algorithm starts by finding i such that
zi < z zi+1

. If such i exists, then the density in z is estimated as zimi+zi+1

mi+1

2M(zi+1

�zi)
, where

M =
Pb

i=1

mi. Otherwise it is assumed that z is outside the estimated region.

30 Tomáš Pevný

B Construction of datasets

Benchmark problems for the evaluation of batch anomaly detectors were constructed following
the process in Emmott et al (2013). It advocates the creation of anomaly detection benchmarks
from real data, since artificial problems can be too far from realistic problems. 36 source
datasets from which all benchmark problems have been created were downloaded from Frank
and Asuncion (2010) from a category of classification problems with numerical attributes and
without missing variables. The list of downloaded datasets together with information about
the number of normal / anomalous samples is in Table 5

If the source dataset was a binary problem, the larger class was used as a normal class
and the smaller as the anomaly class. Multi-class datasets were converted to binary ones as
follows:

1. Train a random forest classifier to solve the multi-class problem in the original source
dataset using all samples.

2. Estimate the confusion matrix C with Ck,j = P (j|xi, k), where the conditional probability
is the probability returned by random forest that the sample xi belongs to the class j when
k is true.

3. Create a complete graph with vertices being classes from the datasets and edges having
weights from confusion matrix as Ck,j +Cj,k.

4. Compute the maximum weight spanning tree of the graph to identify “most-confusable”
pairs of classes.

5. Two-color the maximum spanning tree such that no adjacent vertices has the same color.
Each color determines set of classes that make the normal and anomalous class.

Notice that the above construction aims to maximize the difficulty (confusion) between normal
and anomalous class.

Anomalous samples were divided into four groups according to the probability that a
sample from the anomaly class is assigned to an anomaly class estimated the by the kernel
logistic regression with a Gaussian kernel Zhu and Hastie (2005). Based on this score, all
anomalous points were assigned a difficulty category as: easy ([0.84, 1), medium ([0.7, 0.84),
hard ([0.5, 0.7), very hard (0, 0.5].

A concrete benchmark problem with a given fraction of anomalies (experiments used frac-
tions 0.005, 0.01, 0.05, 0.1) and difficulty (easy, medium, hard, very hard) was created as follows:

1. Randomly divide samples into training a testing set allowing maximum of 10000 samples
in each set.

2. If anomalies should be clustered, select randomly a pivot and find sufficient number of
nearest points in chosen difficulty category such that the final training and testing sets
have the desired number of anomalous samples. If anomalies are not clustered, select
anomalous samples randomly.

3. Divide the selected anomaly samples into training a testing set and mix with normal
samples.

The final benchmark problem is attached a clusteredness category according to a fraction
of sample variance of normal samples to the sample variance of anomalous samples as: high

scatter (0, 0.25), medium scatter [0.25, 0.5), low scatter [0.5, 1), low clusteredness [1, 2), medium

clusteredness [2, 4), and high clusteredness [4,1).

Created benchmark problems have three basic properties (rate of anomalies within data,
difficulty of anomalies, and clusteredness) according to which they can be divided.

Loda: Lightweight on-line detector of anomalies 31

number of samples
dataset dimension normal easy medium hard very hard
abalone 10 2153 7 44 955 1018
blood-transfusion 4 384 7 9 49 84
breast-cancer-wisconsin 30 357 188 18 5 —
breast-tissue 9 66 17 5 3 15
cardiotocography 27 1831 143 86 48 18
ecoli 7 205 81 27 9 14
gisette 4971 3500 — 1471 2029 —
glass 10 114 75 20 3 2
haberman 3 225 4 11 19 47
ionosphere 33 225 36 86 3 —
iris 4 100 44 2 2 2
isolet 617 4497 40 3260 — —
letter-recognition 617 4197 35 3565 — —
libras 90 216 115 28 — —
madelon 500 1300 — 1300 — —
magic-telescope 10 12332 2808 1074 1079 1727
miniboone 50 93565 17744 6179 5703 6873
multiple-features 649 1200 63 737 — —
musk-2 166 5581 604 212 105 96
page-blocks 10 4913 315 69 77 99
parkinsons 22 147 31 13 4 —
pendigits 16 5539 5286 99 36 32
pima-indians 8 500 101 76 45 46
sonar 60 111 55 42 — —
spect-heart 44 212 7 46 2 —
statlog-satimage 36 3594 2520 111 84 126
statlog-segment 18 1320 866 73 30 21
statlog-shuttle 8 57769 10 19 26 176
statlog-vehicle 18 629 46 86 65 20
synthetic-control-chart 60 400 197 3 — —
vertebral-column 6 410 — — 68 142
wall-following-robot 24 2923 1841 380 170 142
waveform-1 21 3304 1204 279 147 66
waveform-2 21 3304 1203 269 150 74
wine 13 107 65 6 — —
yeast 8 752 177 214 211 130

Table 5: Datasets used to create benchmarking problems. The number of samples is
after the dataset has been converted to a two-class problem as described in Appendix B.
Columns captioned easy, medium, hard, very-hard shows the number of anomalous
samples with a given level of difficulty. Column captioned normal shows the number of
normal samples.

C Experimental results

0
(35)

0.005
(22)

0.01
(29)

0.05
(35)

0.1
(32)

1.4

1.45

1.5

1.55

1.6

rate of anomalies

av
er
ag
e
ra
n
k

Loda per-feature

Fig. 10: The figure shows average rank of Loda and detector based on an ensemble of
histograms modeling individual features on different rates of anomalies within data.
The small number in parentheses shows the number of datasets used to create bench-
marking problems. Notice that only 22 datasets had enough normal samples such that
the problems with rate of anomalies 0.005 can be created. Wilcoxon signed rank test
assessing that both detectors delivers the same performance on each rate of anoma-
lies separately accepted hypothesis with p-values 0.053, 0.44, 0.11, 0.16, and 0.31 in
order of increasing rate of anomalies. The same test on results from all experiments
rejected the hypothesis with a p-value 0.028, which means that Loda’s performance is
statistically better.

