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Identifying suspicious users in corporate networks
Tomáš Pevný, Martin Rehák, Martin Grill

Abstract—This paper focuses on the identification
of suspicious users in corporate networks, which can
be so due to many reasons: e.g. being victims of an
attack or performing it, ex-filtering sensitive informa-
tion, downloading files through p2p network, etc. The
proposed detection method models users’ incoming and
outgoing traffic without inspecting the actual content
of network packets. Since it simultaneously has a very
low computational complexity, the detection is almost
instant, which is important for limiting the potential
damages. The additional benefit is that the method
works on encrypted networks as well.

The proposed method uses entropies of distributions
of IP addresses and ports to build two complementary
models of user’s traffic. These two models are coupled
with two orthogonal anomaly measures based on the
principal component transformation, which gives four
different detectors.

The proposed detectors are experimentally evalu-
ated and compared to adapted prior art on one week
long capture of traffic on university network. The ex-
periments reveals that no single detector can detect
all types of anomalies, but together they can detect
most of them. This result is expected and stresses the
importance of ensemble approach towards intrusion
detection.

I. Introduction

The recent years observe a rapid grow of cyber-crime,
e.g. corporate servers and systems being hacked into and
the sensitive data being stolen, web servers becoming
victims of denial of service, or other types of attack
launched against them. The danger can also comes from
within the network, as users try to exfiltrate sensitive
information, or participate in other undesirable behavior
such as downloading content from p2p networks. This
emphasizes the need to improve the not only the network
intrusion detection systems (NIDS) (nowadays a standard
component of security measures), but also the monitoring
of internal network.

This paper describes family of detectors aimed to iden-
tify suspicious users, which can be so due to different
reasons listed in the previous paragraph. It is important to
identify them soon, such that their behavior can be quickly
inspected in more detail and potential damage limited.
Our detectors do not inspect the contents of the packets,
as they rely solely on statistics in the NetFlow [2] data,
which is exactly on par with this requirement. In enables
them to operate at high speed and scrutinize many users
simultaneously.

The models used by the detectors are based on ag-
gregated statistics of user’s traffic, namely on entropies
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of distributions source and destination ports and IP ad-
dresses. These quantities are usually correlated between
users, which, together with the assumption that users’
aggregated traffic varies slowly, allow us to use principal
component analysis to build model of the benign behavior.

We build two separate models, (i) one for users’ incom-
ing traffic and (ii) one for users’ outgoing traffic. This,
together with two anomaly measures gives four different
anomaly detectors. The low complexity of the detectors
makes them well suited (i) for real-time intrusion detection
systems (IDS), and (ii) enables to model all users within
the network.

Our detectors were inspired by the work of Lakhina et
al. [6], which aimed to detect anomalies on peering links
between different sub-networks. His model captured state
of the whole backbone network. Contrary, we focus on
modeling users, because we believe that for our application
scenario, it is important to know who caused the anomaly
(and who is therefore suspicious) instead of knowing that
there is an anomaly. The other differences to this work
include very low computational complexity and short up-
date time. This improves the capability to quickly adapt
the models to changes in the traffic.

We have estimated the detection accuracy of the pre-
sented detectors on one week long capture of the traffic
on university network manually labeled by an experienced
operator. It shows that the detectors can well detect
different types of malicious and unwanted user’s behavior.
The comparison to the prior art adapted to our application
scenario also shows the superiority of our work. We believe
that if the detectors are applied in enterprise networks, the
detection accuracy would be even better, because they are
usually better maintained then university networks, which
are very wild.

The paper is organized as follows. The next section
reviews the prior art, namely the Lakhina’s detector [6]
and discusses, why straightforward adaptation to our ap-
plication scenario is difficult. Section III describes our
models of user’s traffic together with the anomaly detec-
tion algorithms based on principal component analysis.
We also explicitly differentiate our work against the prior
art on the conceptual level. The experimental evaluation
and empirical comparison to the selected prior art is in
Section IV.

Throughout this paper, we use several terms which
we clarify here. The flow is an unidirectional connection
between two users (computers) fully determined by the
following tuple: (source IP address, source IP port, des-
tination IP address, destination port, procol). One flow
usually comprises of many packets, and thus it is associ-
ated with additional statistics, such as number of packets,
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number of bytes, starting and ending time of the flow, etc.
For a full list, we refer the reader to the definition of Cisco’s
NetFlow [2] format. We emphasize that in this work, we do
not use these additional statistics. By aggregation of flows
(or traffic), we mean set of flows sharing some property.
For example, flows aggregated by source IP address means
set of flows with the same source address. On aggregated
flows, we can measure an empirical distribution of ports or
and IP addresses. Since the support of these distributions
is discrete and finite, they are simple histograms. Finally,
from these histograms we can easily calculate the entropy
by the usual formula H(x) = −

∑k
i=1 pk log pk, where pk

denotes the probability of kth bin.

II. Lakhina entropy detector

This section reviews Lakhina’s entropy detector [6],
which has been designed to detect anomalies on links
between multiple sub-networks. The detector builds model
of traffic on links, and identify those links that are signif-
icantly different from all other links. Because of different
scope of the prior art, we later discuss issues related
to the straightforward adaptation of the detector to the
identification of suspicious users, which is the focus of this
paper.

A. Description of the detector

This subsection assumes that the information about the
flows is acquired from points of presence (PoP), which
are routers connecting sub-networks to the backbone. The
flows are aggregated at the level of Origin-Destination
flows (OD flows), which comprises of all flows between
selected pair of PoPs. In Ref. [6], authors propose two
detectors, one using volume statistics of OD flows, the
second using entropy based statistics. Here, we focus on
the entropy based model, but the same mechanism is used
for volume model, albeit with different quantities.

Denoting Υ the set of all pairs of PoP, the detector
capture the state of the traffic on the backbone at the
time window t in the feature vector

xt =
(
Ht

sPr(υ),Ht
dPr(υ),Ht

sIP(υ),Ht
dIP(υ)|υ ∈ Υ

)
∈ R4×|Υ|,

(1)
where Ht

sPr(υ)/Ht
dPr(υ) is entropy of distributions of

source/destination ports and Ht
sIP(υ)/Ht

dIP(υ) is entropy
of distributions of source/destination IP addresses of all
OD flows between υth-pair of PoPs. All entropies are
calculated from traffic observed during five-minute long
time windows.

The model of the state of the traffic on the network
is built by means of principal component transformation
(PCT). Feature vectors from previous τ time windows
xt−τ , . . . , xt−1 are arranged as rows in the matrix

X =

 xt−1

...
xt−τ

 ∈ Rτ,N . (2)

PCT applied on X returns set of principle components
{yj ∈ R4×|Υ|}4×|Υj=1 ordered according to their variance.

This means that first components have highest variance,
and consequently contain the most information about xt.
{yj}4×|Υj=1 can be calculated as eigenvectors of the covari-

ance matrix C = E
[
(X− µ)T (X− µ)

]
, where µ is a row-

vector containing means of columns of X.
Lakhina’s detectors rely on the assumption that the

subspace spanned by the first k principal components
Y1:k = (y1, . . . , yk) corresponds to the normal traffic
subspace. This subspace has projection matrix P1:k =
Y1:kY

T
1:k. Consequently, the residual subspace spanned

by components Yk+1:4×|Υ| = (yk+1, . . . , y4×|Υ|) has the
projection matrix Pk+1:4×|Υ| = I − P1:k. By virtue of
the assumption, the residual space contains the anomalous
traffic.

To assess the level of anomalousness of OD flows at
time t, the feature vector xt is decomposed into the part
modeled by the normal subspace, x̄t, and by the anomalous
subspace, x̃t. It holds that xt = x̄t + x̃t. If any component
of x̃t corresponding to the traffic between two points of
presence exceeds the design threshold, all traffic is deemed
to be anomalous.

The original publication [6] claims that first four compo-
nents determines the subspace where the legitimate traffic
lies. But it has been shown by Ringberg et al. [9] that the
accuracy of the algorithm is very sensitive to the settings
of this parameter, which makes the application in practice
dubious.

B. Adaptation to user-level detection

The detector, as described above, detects anomalies on
the level of links between the pairs of points of presence.
We believe that in reality this is not sufficient. We want
to know who caused the anomaly and can be a potential
attacker and who is the victim, not just that there is an
anomaly (although this is important as well). Thus we
need to detect anomalies at finer level, which we do by
identifying suspicious users.

To detect anomalies at this level of detail, the scope
of the original model described above would need to be
changed from links between pairs of PoPs to links between
pairs of users (represented by IP addresses). To implement
this change, the feature vector (1) would have to accom-
modate all links between all pairs of users used during
training and detection phases of the detector. Since the
dimension of the feature vector xt scales quadratically with
the number of users (PoPs), the dimension would increase
so much that the detector will be practically unusable.
For example the traffic on network with 1000 users will be
described by the feature vector of dimension 4 · 106. This
huge dimension has two immediate consequences:

• Number of samples (previously observed feature vec-
tors), τ, in (2) needed to build the model will increase
beyond the point, where the samples are (i) no longer
relevant to the present situation and (ii) are almost
impossible to acquire. Notice that the number of
samples, τ, has to be greater than the dimension of
the feature vector. If we have network with 1000 users,
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t− 4 t− 3 t− 2 t− 1 t

HdIP 0.74 0.76 0.76 0.80 1
HdPr 0.70 0.71 0.72 0.78 1
HsPr 0.41 0.44 0.49 0.56 1

(a) Time correlations

HdIP HdPr HsPr

HdIP 1 0.70 -0.85
HdPr 0.70 1 -0.95
HsPr -0.85 -0.95 1

(b) Space correclation

Table I: Average correlation of entropies of calculated with
respect to the time (Figure (a)), and average correlation
of entropies within the same time window (Figure (b)).

we need more than 4 · 106 samples. If we assume 5-
minute time window for each sample, then the time
span of samples would be approximately 190 years.

• The complexity of PCT depends cubically on the
dimension of the feature vector xt. Consequently,
the calculation of the PCT transformation might be
impossible, or at the time it will be calculated, it will
be no longer relevant.

To address these issues, the [8] simplified Lakhina’s de-
tectors as follows: (a) it uses statistics aggregated only by
source IP addresses, and (b) it uses only latest five time
windows to build the model 1. The feature vector in [8]
equals to

xt =
(
Ht

sPr(ι),H
t
dPr(ι),H

t
dIP(ι)|ι ∈ I

)
, (3)

where I is the set of active IP addresses in the given time
window. Feature vectors xt−5, . . . , xt−1 are used to build
the model for detection at the time window t. In order to
decrease the computational time, only addresses with more
than 100 flows are modeled, and their number is limited
to 1500 (consequently the maximum dimension of feature
vector (3) is 4500). Otherwise, the quantity determining
the level of anomalousness is the same.

The work [1] also adapts Lakhina’s detector, but the
exact details of the model are not clearly described.

III. Proposed anomaly detection

This section describes the proposed models of users’
behavior based on their network traffic. To be exact, two
complementary models are proposed — one based on its
incoming traffic and one based on its outgoing traffic.

The model based on user’s outgoing traffic (flows ag-
gregated by the source IP) uses entropies of distributions
of destination IP addresses, source ports, and destina-
tion ports of all its outgoing flows. Similarly, the model
based on user’s incoming traffic (flows aggregated by the
destination IP) uses entropies of distributions of source
IP addresses, source ports, and destination ports of all
incoming flows. All entropies are calculated from all flows
observed during 5-minute long time windows.

1The use of time-windows cannot be easily avoided, since sufficient
statistics is need to estimate entropy of distribution.

The rationale behind models is following. Most of the
time, users’ behavior changes slowly with the respect to
the chosen five minute time interval. This can be observed
by a strong correlation of witnessed statistics from differ-
ent time windows. We have exemplified this phenomenon
in Table I(a), where time correlations are estimated from
50 consecutive captures of five minute long traffic windows
(4 hours and 10 minutes) on university network with
approx. 15 000 flows per minute. This time correlation
was already exploited for example in [13], [12], [5], [6], but
in the different framework of anomaly detection on the
backbone traffic.

The behavior of users of the same network is also similar
to each other, which means that witnessed statistics of dif-
ferent users in the same time window are correlated. This
phenomenon is showed in Table I(b) for the aggregation
over the source IP address (outgoing traffic). The similar
holds for the aggregation over destination IP address.

A. Model of the network

Our models simultaneously exploit both types of afore-
mentioned correlations — correlations with respect to time
and correlations between the users within the same time
period. We construct two separate models, one with aggre-
gation over source IPs (modeling outgoing traffic), and one
with aggregation over destination IPs (modeling incoming
traffic). Since the models differ only in the aggregation,
they are explained below on the aggregation with respect
to the source IP address.

Denoting quantities calculated at the time step t by
the same superscript, the behavior of one user ι ∈ I
(ι corresponds to one source IP address, I denotes set of all
modeled IP addresses) is described by the following vector
of dimension 15:

xt(ι) = (Hτ
sPr(ι),H

τ
dPr(ι),H

τ
dIP(ι)|τ ∈ {t− 4, . . . , t}) .

The vector xt(ι) effectively describes user’s traffic at five
consecutive time windows t − 4, . . . , t. The entropies are
calculated iff the number of flows associated with the user
ι is higher than 1 (if there is only one flow originating at
given source IP, or ending at given destination IP, than all
entropies are equal to zero). Consequently, for successful
detection, at least two flows per five minutes are needed.

As has been explained above, individual items of the
feature vector xt are correlated. It is highly likely that
anomaly behaving users express different type of correla-
tion then benign ones. By virtue of the assumption that
most users are benign, PCT is used to build the model
of traffic of benign users. This model is used to identify
anomalies among users by using variance on major and
minor components [11]. The rest of this section describes
the technical details.

The model used to detect anomalies at time t is built
from data acquired at time windows t − 5, . . . , t − 1. The

feature vectors,
{
xt−1(ιi)

}|I|
i=1

, corresponding to all active
IP address at these time windows, are arranged in the data
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matrix

X =

 xt−1(ι1)
...

xt−1(ι|I|)

 ∈ R|I|,15. (4)

This data-matrix is used by PCT to calculate set of or-
thogonal vectors {yj ∈ R15}rj=1 together with eigenvalues
λ1 > λ2 > . . . > λr. For numerical stability, all vectors
yj corresponding to eigenvalues λj smaller than 10−6 are
discarded (consequently r ≤ 15).

To assess anomaly level of user ι (feature vector xt(ι))
at time window t, following two quantities are used:

f(xt(ι)) =

k∑
j=1

(yTj x
t(ι))2

λ2j
,

f⊥(xt(ι)) =

r∑
j=k+1

(yTj x
t(ι))2

λ2j
. (5)

f(xt(ι)) captures variance on major components, while
f⊥(xt(ι)) captures variance on minor components. If one
quantity exceeds corresponding threshold δα/δ

⊥
α , user ι is

deemed as being anomalous. Based on the preliminary ex-
periments, the split between major and minor components
is set to k = 1.

The choice of these two measures is not ad-hoc. It has
been showed [11] that if data (rows of matrix X) follows
a multivariate normal distribution, then distributions of
f(y) and f⊥(y) follow F-distributions (this theoretically
enables to set thresholds δα, δ

⊥
α analytically). However

in practice, the condition of multivariate normality is
likely to be violated and thresholds δα and δ⊥α have to
be determined empirically from the observed data. In
this paper, we do not solve this problem. To compare
the detection algorithms, we use ROC curves which are
agnostic to the choice of the threshold.

In practice, we of course need to set the detection
threshold. We suggest to use adaptive techniques described
in [7], which determine the threshold adaptivelly according
to the present situation.

B. Difference to the prior art

Although our model might resemble the model proposed
by Lakhina et al. [6] (see Section II), there are substantial
differences which we clarify below.

Whereas Lakhina’s approach models traffic on peering
links between two PoPs, we model typical behavior of
users. Consequently, the our model enables identification
of anomalies at finer level.

The computational complexity of our method is signifi-
cantly lower than Lakhina’s. The most complex operation
in both algorithms is the principal component transforma-
tion with complexity O(d3), where d is the dimension of
the model. Since the proposed model has fixed dimension
15, the computational complexity of the proposed method
is O(153) irrespectively to the number of users. On the
other hand, the computational complexity of Lakhina’s
method grows in the order of O(|Υ|3), where |Υ| is the

number of peering links (remember that the number of
peering links grows quadratically with number of sub-
networks).

The smaller dimension of the proposed model also prop-
agates to reduction of the number of samples needed to
build the model. Rubinstein et al. [10] report using one
week of data to build the model of the network based
on (2), whereas our model (4) needs only five consecutive
time windows (25 minutes).

The last two features of our approach (small compu-
tational complexity and the requirement on smaller set
of observations for building the model) allows a frequent
update of underlying models, which helps to keep the
model up to date to reflect the present situation.

Last but not least, Lakhina’s work used square predic-
tion error [4] as an anomaly measure, whereas our ap-
proach uses variance on major and minor components. The
square prediction error measure ignores the information
carried on minor components, which, according to our
experimental results, is useful for identification of users
connected in p2p networks.

IV. Experimental evaluation

This section presents the comparison of our model(s)
equipped with anomaly measures f and f⊥ (5), and with
aggregation over source and destination IP addresses (4
detectors in total) to the entropy and volume version of
Lakhina’s detector adapted to the scenario of the interest
(see Section II-B).

The comparison is made on the traffic captured at the
university network during the first week of December,
2010. The dataset continuously spans 6 days and 14
hours. It contains approximately 42 millions of flows with
19000 IP addresses. An experienced network operator has
identified 10% of flows as malicious and 11% of flows as
benign. Since the university network is wild, almost all
the time under attacks, we consider this dataset as a good
testbed.

The performance is compared by receiver operating
characteristics (ROCs) and by modified area under ROC
curve (AUC). The modification consists from calculating
it only in the interval of false positive rate [0, 0.01], and
normalizing it such that its value is 1.0 for the perfect
detection. This limit on false positive rate up to 0.01 is
used to highlight the quality of the detection on low false
positive rates, which is important for practice.

A. Experimental results

Table II shows values of modified AUCs of the compared
detectors on different types of suspicious traffic. Notice,
that no single detector is the best in detecting all kinds of
anomalies. This is not surprising, since detectors utilize
different models of the network and consequently they
detect different anomalies. We can see that the presented
family of four detectors can detect almost all kinds of
suspicious traffic better than the adapted prior art [8],
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(b) Responses to horizontal scan
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(c) P2P
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(d) Responses to P2P
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(e) Skype supernode
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Figure 1: ROC curves on selected types of malicious traffic.
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f -sIP f -dIP f⊥-sIP f⊥-dIP Lak. Ent. Lak. Vol.

anomalous FTP download 0.00 0.00 0.58 0.57 0.00 0.48
horizontal scan request 0.00 0.22 0.52 0.32 0.00 0.07
horizontal scan response 0.16 0.00 0.22 0.41 0.00 0.00
scan sql 0.00 0.00 0.41 0.30 0.00 1.00
ssh cracking request 0.02 0.01 0.05 0.02 0.00 0.00
ssh cracking response 0.00 0.00 0.00 0.02 0.00 0.00
vertical scan 0.00 0.72 0.79 0.77 0.00 0.72
p2p request 0.33 0.26 0.15 0.25 0.01 0.00
p2p response 0.25 0.21 0.36 0.00 0.00 0.00
p2p like request 0.01 0.37 0.07 0.49 0.00 0.00
p2p like response 0.25 0.11 0.34 0.15 0.00 0.00
skype supernode request 0.00 0.28 0.00 0.36 0.00 0.00
skype supernode response 0.34 0.00 0.48 0.00 0.00 0.00

Table II: The area under ROC curve in the interval [0, 0.01] normalized such that perfect detection has the AUC equal
to one. Higher value is better and the best performance is bold faced.

except the sql scan. The only case, where all detectors
have failed is the ssh cracking.

We highlight that p2p and skype traffic is to some extent
detected by our detectors, whereas the prior art has failed
completely. Even though the detection is not perfect, it
is important as it can be used as a seed in graph based
detectors to identify other connected users [3].

It is also interesting to observe, how detectors with
different aggregations complement each other. Detectors
aggregating over source IPs detect anomalous outgoing
traffic (they identify attackers), while detectors aggregat-
ing over destination IPs detects the victims. These results
suggest that the improvement can be gained by clever
fusion of the outputs, which is postponed to the future
work.

V. Conclusion

This paper presented a family of real-time detectors
identifying suspicious users of corporate networks. The
detectors acquire the statistics of users traffic at one point,
which is usually the connection point to the internet.
The detectors uses principal component transformation to
model dependencies between entropies of distributions of
ports and IP addresses. By using different aggregations
(source and destination IPs) and different anomaly mea-
sures, four different anomaly detectors were created, each
detecting different type of attacks or anomalies.

The detectors were experimentally compared to adapted
prior art on one week long capture of traffic on university
network labeled by an experienced operator. The exper-
iments showed that our methods are most of the time
better that the prior art, as they well detect network scans,
anomalous downloads, p2p traffic, and skype supernodes.

The important feature of our detectors is their low
complexity, which makes them well suited for real-time
intrusion detection systems based on an ensemble of simple
detectors. Because of this, we intentionally did not deal
with problems of setting of anomaly thresholds and the
problem of fusing the outputs of detectors. We leave these
important problems to our future work, as we believe that
both problems have to be approached generally with as
less assumptions on detectors, as possible.
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