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ABSTRACT

We examine the universal pooled steganalyzer of [15] in two
respects. First, we confirm that the method is applicable to
a number of different steganographic embedding methods.
Second, we consider the converse problem of how to spread
payload between multiple covers, by testing different pay-
load allocation strategies against the universal steganalyzer.
We focus on practical options which can be implemented
without new software or expert knowledge, and we test on
real-world data. Concentration of payload into the minimal
number of covers is consistently the least detectable option.
We present additional investigations which explain this phe-
nomenon, uncovering a nonlinear relationship between em-
bedding distortion and payload. We conjecture that this
is an unavoidable consequence of blind steganalysis. This
is significant for both batch steganography and pooled ste-
ganalysis.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
information hiding

General Terms

Security, Algorithms

Keywords

Batch Steganography, Anomaly Detection, Steganalysis, Em-
bedding Strategies

1. INTRODUCTION
Steganography and steganalysis have been mainly con-

cerned with simple abstractions of the data hiding problem,
focusing on embedding of payload in one cover, or detec-
tion of payload in one object belonging to one user. The
problems of batch steganography – how best to spread pay-
load between multiple covers – and pooled steganalysis – how
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to pool evidence from multiple objects of suspicion – were
posed in 2006 [11]. At the time it was proposed that an
essentially game-theoretic situation would occur, with the
optimal choice of payload spreading depending on the oppo-
nent’s method for amalgamating evidence, and vice versa.
Until recently there was little published research on these
topics, but early analyses [11, 12] indicated that, for the
embedder, the optimal behaviour is likely to be extreme con-
centration of payload into as few covers as possible, or the
opposite in which payload is spread as thinly as possible.
However, these theoretical results could not be confirmed
without practical pooled steganalyzers to test against.

In 2011-12 [14, 15] we demonstrated a method for pooled
steganalysis which treats actors (users who transmit cover
or stego objects) as the unit of classification, measures dis-
tance between actors as a distributional difference between
the feature clouds of their transmitted objects, and then ap-
plies outlier analysis to detect guilty (steganography-using)
actors. Now that the literature is finally equipped with at
least one practical method for pooled steganalysis, we can
look for practical methods for batch steganography. We
briefly discuss theoretical approaches to this problem in sub-
section 1.1.

The work reported in this paper was motivated by two
aims. First, to extend the experimental evidence base for
the pooled steganalyzer of [15], which so far has only been
tested against one steganographic algorithm (nsF5), by test-
ing against additional steganographic embedding algorithms,
focusing on those with existing implementations which make
them usable by a non-expert. Second, to test different em-
bedding strategies1 , again with a focus on embedding strate-
gies which could be used by a non-expert. After briefly
summarising the blind pooled steganalyzer (section 2) we
present the design of our experiments in section 3 and the
results in section 4.

The authors found the consistency of the results, which
favour concentration of payload in as few covers as possible,
surprising. We performed further investigations to under-
stand why they arise, which highlighted the significance of
an embedding distortion which, for individual images mea-
sured by a popular steganalytic feature set, is nonlinear with
respect to payload. Furthermore, feature preprocessing such
as normalization or whitening makes a significant difference
to this effect. These results are reported in section 5. Fi-

1To avoid confusion, the terminology embedding algorithm is
used for the steganographic method for embedding in indi-
vidual objects, and embedding strategy for the batch problem
of how payload is allocated amongst multiple covers.



nally, section 6 concludes the paper with a discussion of
these insights, and their importance for the design of both
embedding strategies and future pooled steganalysis.

1.1 Optimal Embedding Strategy
When the batch steganography problem was presented,

some theoretical approaches were tried. In [11] the detector
is modelled as a single real output for each image (e.g. quan-
titative steganalyzer), combined into a pooled steganalysis
using a number of approaches. In a rather restricted frame-
work it is shown that the optimal embedding strategy is one
of the two extremes: concentration of payload into the fewest
number of covers, or spreading paying equally amongst all
covers. A similar result is obtained in [12], for additional
pooling methods, and another related result appears in [13].
All of these are limited in scope, and in particular it is as-
sumed that the covers are homogeneous (equal capacity and
sensitivity to embedding). This is not the case for the real
world.

We can make use of more recent literature to determine
an embedding strategy which is either optimal (if the defini-
tion of optimality is in terms of a distortion function) or at
least near-optimal (if defined in terms of detectability) us-
ing adaptive embedding [4, 18]. Designed for embedding in
a single image (or potentially a cover of any medium), adap-
tive embedding aims to concentrate the changes caused by
embedding in those areas where they will be least detectable:
in practice, in noisy and edge regions of images. Given a
function which measures distortion, embedding which mini-
mizes distortion must be located randomly following a Gibbs
distribution, and the close approximation to this Gibbs em-
bedding can be obtained using Trellis coding [2, 3, 5].

Given a set of cover images, in principle it should be pos-
sible to extend the distortion function to measure distortion
in multiple images (perhaps by simple summation, perhaps
by a more sophisticated definition) and apply Gibbs em-
bedding to the entire set of images, performing at a stroke
both batch allocation and embedding using a strategy which
optimizes distortion. However, this is not straightforward:
the definition of distortion should not necessarily be simple
summation, particularly if the cover images are of different
sizes or very heterogeneous; there is the underlying limi-
tation that the optimality of the embedding depends on a
close relationship between distortion and detectability; fi-
nally, there is as-yet no available implementation of Gibbs
embedding in multiple images.

For this paper, it is the final limitation which causes us to
exclude Gibbs embedding. We have chosen to focus on real-
world steganography, such as would be possible by a non-
expert using tools available today, addressing the following
question: how would we advise a non-expert to hide data in
multiple objects? This restricts us to embedding software
which works on single images at a time (because no batch
embedding has yet been implemented), to embedding algo-
rithms that have available implementations, and to a set of
cover images obtained from a real-world source. We assume
that the embedder can use existing tools to determine the
maximum capacity of individual images (see subsection 3.1)
and manually split the payload into segments of their chosen
size2. We can benchmark simple options against the only ex-

2We will not consider how the sender informs the recipient
of the lengths of each segment, or which image corresponds

isting pooled steganalysis method, which is described in the
following section.

2. BLIND UNIVERSAL POOLED

STEGANALYSIS
Suppose that multiple actors each transmit multiple ob-

jects, all of which have been intercepted by the steganalyst.
The steganalyst is assumed to know which actor sent which
object. We assume that each actor used a source of cover ob-
jects, different from sources used by other actors. We do not
require the steganalyst to have access to these sources, which
makes it difficult to train traditional steganalysis methods.
The steganalyst’s aim is to identify a guilty actor or actors,
who use steganography in some (not necessarily all) of their
transmitted objects.

The first published method [14] for this scenario relied on
hierarchical clustering. Its effectiveness was tested in labo-
ratory conditions by simulating up to 13 actors by different
digital cameras. Subsequent work [15] simulated realistic
conditions by using a social network dataset with thousands
of actors. The same work also proposed to replace hierarchi-
cal clustering by an outlier detection algorithm (local outlier
factor [1]), as it argued that guilty actors represent outliers
rather then tight clusters in the feature space. The latter
method, used in this paper, works as follows.

First, we extract features from all available images. In
principle, any steganalytic feature set might work, if sen-
sitive to the steganographic algorithm used by guilty ac-
tors. (More precisely, it should be more sensitive to stegano-
graphic alteration than to innocent image processing opera-
tions.) In experiments presented in this paper, we have used
the PF-274 feature set [19], since it offers good detection ac-
curacy against the tested steganographic algorithms; it also
has relatively low dimension. After extraction, the features
are normalized to zero mean, unit variance, and optionally
whitened and renormalized.

Second, we group the extracted features by actor, and
calculate distances between all pairs of actors by using max-
imum mean discrepancy (MMD) [8]. In experiments pre-
sented here, we use the linear kernel for MMD, which corre-
sponds to the L2-distance between the mean feature vectors
of individual actors. This choice is based on the experiments
presented in [14]. The advantage of pooling objects from
each actor is that the method improves the signal-to-noise
ratio compared with working on individual objects. This
leads to better accuracy in the identification of the guilty
actor.

Third, we rank actors based on their pairwise distances
calculated in the previous step. To do so, we use the local
outlier factor method (LOF), because it has favourable prop-
erties for our application: it requires only pairwise distances
between points (actors); it is application agnostic; it pro-
vides a measure of how much an outlier each point (actor)
is; it relies on single hyper-parameter, to which the method
is not particularly sensitive.

The LOF method provides a measure of being outlier for
every actor, but does not provide a threshold, above which
the actor should be considered to be an outlier. We simply
use the LOF values to rank the actors according to their

to which segment. It could be part of the shared secret key
or a small header.



guiltiness. The evaluation criterion measures how often is
guilty actor among the top x% most suspicious actors.

Some details of the LOF method are briefly described in
Appendix A.

3. EXPERIMENTAL DESIGN
In this paper we evaluate the blind universal pooled ste-

ganalyzer in a variety of situations, testing different combi-
nations of the following parameters: total number of actors,
number of images per actor, embedding algorithm, embed-
ding strategy, and total payload. For all the experiments the
true number of guilty actors was fixed at one, for which the
anomaly detector of [15] is best suited. The options for the
other parameters are described in the following subsections.

3.1 Embedding Algorithms
Searching the internet for steganographic algorithms for

JPEG images that can be readily used by ordinary users,
we have found just five: F5 [24, 25], JPHide&Seek [17],
Steghide [9, 10], OutGuess [21, 22], and JSteg [23].

OutGuess [21] is an adaptation of LSB replacement for
JPEG images. It modifies DCT coefficients and skips coeffi-
cients equal to zero or one to avoid visible distortions due to
changing zeros to ones. To evade detection based on first-
order statistics, OutGuess saves half of the DCT coefficients
for a statistical restoration phase, during which it tries to
reconstruct the histogram of DCT coefficients of the origi-
nal cover image. It is similar to JSteg [23], which we did
not test because it is very weak and even more detectable
than OutGuess [20].

F5 [24] tries to preserve the shape of the histogram of
DCT coefficients. It encodes the message into LSBs of DCT
coefficients, but instead of replacing the LSBs, it decreases
the absolute values of DCT coefficients if their LSBs does
not match the message. The F5 algorithm does not use zeros
for embedding, and if a DCT coefficient is changed to zero
during embedding then the message bit is re-embedded again
utilizing another coefficient. This feature increases number
of zeros in the stego image, which is called shrinkage. F5
also uses matrix embedding, a coding scheme that increases
the embedding efficiency (the number of bits embedded per
embedding change), reducing embedding distortion for small
payloads.

Steghide [10] also tries to preserve first-order statistics
like OutGuess, but without resorting to a statistical restora-
tion phase. Steghide creates a graph-like structure with ver-
tices representing (groups of) coefficients that need to be
changed. Edges between vertices represents modifications in
both groups, such that if performed, both vertices code the
message. The edges are also assigned weights based on dis-
tortion of visual similarity caused by an embedding change.
During embedding, the algorithm tries to find vertex match-
ing in the graph, minimizing the distortion while coding the
message.

Although the implementation in C of the JPHide&Seek
algorithms are available, a higher-level description of its
function is not known to the authors.

Besides the above four algorithms, we have included the
nsF5 algorithm, for which only a simulator has been re-
leased [16]. Although this is not in accord with our goal to
investigate the security of practically available algorithms,
the algorithm was included due to its popularity in the re-
search community. The nsF5 algorithm uses the same em-

bedding operation as F5, but replaces matrix embedding
based on Hamming codes with wet paper codes with im-
proved efficiency [6] to remove the shrinkage effect. Note
that we used the 2008 version of the nsF5 simulator, which
is not the same as the most recent version currently pub-
lished by the author: the current version simulates a higher
embedding efficiency.

3.2 Embedding Strategies
Recall the goal of batch steganography: the steganogra-

pher wants to spread a message of total length M among
images (X1, . . . , Xn) with capacities (c1, . . . , cn), using a
steganographic embedding algorithm for individual images.
(We will discuss how (c1, . . . , cn) are determined in the fol-
lowing subsection.) We have identified five strategies to de-
termine the message fragment lengths (m1, . . . ,mn), with
M =

∑n

i=1
mi, to be embedded into the images.

In the max-greedy strategy, the steganographer wants
to embed the message into the fewest possible number of
covers. During embedding, he iteratively chooses the covers
with highest capacity yet to be used, and embeds a portion
of the message equal to the capacity of the image. Assuming
that the images are ordered by capacity c1 ≥ c2 ≥ . . . ≥ cn,
this leads to the following for the message lengths

mi = ci, ∀i ∈ {1, . . . , I − 1},

mI = M −
I−1
∑

i=1

mi,

mi = 0, ∀i ∈ {I + 1, . . . , n},

where I denotes the smallest possible number of images with
sufficient capacity, i.e.

I = argmin
i

M ≤
i
∑

j=1

cj .

The max-random strategy is the same as max-greedy,
except that the covers used for embedding are chosen in a
random order. Consequently, the number of utilized images
can be higher then in the max-greedy strategy. This sim-
ulates a steganographer who is using a strategy of concen-
trating payload, but is not taking individual capacity into
account in advance.

In the linear strategy, the message is distributed into
all available covers proportionately to their capacity. This
means that

mi =
ciM

∑n

j=1
cj

.

(Fractional bits are ignored in this study.)
In the even strategy, the message is distributed evenly

into all available covers regardless to their capacity. Thus

mi =
M

n
.

Executing this strategy it can happen that for some images,
the message length mi exceeds their capacity, ci. In these
cases, we set mi = ci and recalculate an even message length
for the remaining images.

In the sqroot strategy, the message is again spread among
all images with the length of the fragments being propor-



Mean Mean Number of
estimated relative zero capacity
capacity capacity covers

nsF5 53192 0.80 1265
F5 38427 0.57 0
JPHide&Seek 22133 0.33 0
Steghide 25249 0.38 3161
OutGuess 25654 0.38 121

Table 1: Average capacity of images in the social
network image database, for the steganographic al-
gorithms used in this paper. Capacities (bits) were
estimated by the algorithm described in Section 3.3.
The relative capacity (bpnc) is defined as the esti-
mated capacity divided by the number of non-zero
DCT coefficients in the image. Number of zero ca-
pacity images is out of 800 000.

tional to the square root of their capacities, i.e

mi =

√
ciM

∑n

i=j

√
cj

.

In our preliminary experiments we found that this so fre-
quently exceeded the capacities that we discarded the strat-
egy. (It is, in any case, based on a misreading of the square
root law of capacity.)

3.3 Estimation of capacities
The embedding strategies described above assures the ste-

ganographer to know the maximum length (capacity ci) he
can embed into a particular image with the chosen embed-
ding algorithm. In fact such a maximum is not always well-
defined, since capacity can depend on content. Following
our aim of simulating real-world practical steganography, we
estimate the maximum message length for each embedding
algorithm, and each cover image, as follows.

First, we query the implementation of the algorithm to
provide an initial estimate of the maximum message length.
This is done either by embedding a very short message into
the given image (implementations of F5, JPHide&Seek, and
OutGuess print the estimated capacity to the console upon
embedding), or asking for information about a given image
(the implementation of the Steghide). The implementation
of nsF5 does not provide a capacity estimate, so we set it to
0.8 · nc, where nc stands for the number of non-zero DCT
coefficients.3

Once we have an initial estimate of capacity, we try to
embed a randomly generated message of this length. If the
embedding fails, the estimate of the capacity is decreased
by 10 bytes and the procedure is repeated. Otherwise, we
deem the current estimate of the capacity as final. We al-
low a maximum of 100 repetitions, after which the image is
deemed as not suitable for the embedding and its capacity
is set to zero.

The purpose of the last step is threefold: (a) it refines
the initial estimates, (b) it verifies that the message can be
actually embedded, and (c) it discards singular images (such
as night pictures, blue skies, etc.).

3This capacity estimate of nsF5 is based on discussions with
the author and our experiences from previous work; it does
not seem to have been published.

In practice, the actual message length may also depend on
contents of the the message itself, and on the steganographic
key, because of slightly varying correlation between the cover
and the message. To circumvent unpredictable behaviour,
we decreased all capacity estimates to 90% of the original.
Our capacity estimates are thus strictly conservative, but
this should affect the results only slightly, as there should
be little difference between embedding at total capacity and
near-total capacity. The mean capacities, relative capacities,
and number of zero capacity images (out of 800 000 in our
image set, see below) are displayed in Table 1.

3.4 Real-World Images
Our experiments were performed on a highly realistic data

set, obtained from a leading social networking site. Since
the process of creating this data set has already been de-
scribed in [15], we recapitulate it here briefly. All images
uploaded to a popular social network and made publicly
visible, by users who identified themselves with member-
ship of Oxford University. After downloading by following
public links, the files were anonymized and no personally-
identifiable information was retained. All images have the
same format (JPEG), with the same quality factor (85), and
approximately the same size (1Mpix). Nonetheless they are
very hard to steganalyze, because of an unknown and prob-
ably wild processing history: the social network automati-
cally resizes and re-compresses uploaded images, following
potential image processing operations between the camera
and upload.

The different users will be using different cameras (po-
tentially more than one each), which makes the set hetero-
geneous. Some images are not even natural photographs:
they include montages, images with captions, or entirely
synthetic advertisements. In a realistic scenario, we must
deal with this type of difficult data. Pooled steganalysis can
help to amplify a stego signal, but we must expect a certain
variation between innocent actors.

For the experiments, we have used subset of this database,
selecting exactly 200 photos from each of 4000 users (“ac-
tors”), who after anonymization are known only by an in-
teger 1–4000. These 800 000 images form the data set used
in this paper. It is a highly realistic image set because it is
exactly the sort of media used on the internet in large social
networks.

3.5 Experimental protocol
By using the social network data set, we simulate the

scenario of monitoring a network and identifying the guilty
users. We vary the number of actors, na ∈ {100, 400, 1600},
and number of images per actor, ni ∈ {10, 20, 50, 100}. The
actors and images were always selected randomly. All exper-
iments discussed in Section 4 follow the protocol described
here.

First, we must determine the size of the entire message
M . Although its maximum depends on the embedding al-
gorithm, in order to make like-for-like comparisons between
different algorithms we need a fixed reference point. Since
the information in a JPEG image is the nonzero coefficients,
we measure payload relative to the total number of nonzero
DCT coefficients. These are commonly referred to by the
acronym “nc”, hence we will measure total payload as the
number of bits per nonzero coefficient, bpnc. Bearing in
mind that algorithms such as OutGuess and Steghide can-



not reliably embed more than about 0.25 bpnc in a single
image, we will choose payloads only up to this level. This
also ensures that the message length does not exceed the
total capacity, M ≤∑n

i=1
ci.

Then we can perform what we call “one experiment”:

1. Randomly select na actors and ni images per actor.

2. Randomly choose a guilty actor and embed random
payload measuring p bpnc into his images using the
chosen embedding strategy and embedding algorithm.
The message length embedded into the images is equal
to pN , where N is the total number of all non-zero
DCT coefficients in the actors’ images.

3. Extract features from images of all actors.

4. Normalize each feature to zero mean and unit variance.

5. Whiten the set of features to decorrelate them, discard-
ing trivial components corresponding to eigenvalues of
less than 0.01. This is achieved using the Principal
Component Transform (PCT), after which the features
are renormalized to unit variance. (The whitening step
may be omitted.)

6. Group extracted features by actor.

7. Calculate distances between actors (linear MMD, i.e.
the distances between the mean feature vector of each
actor).

8. Calculate LOF values of every actor. The number of
nearest neighbours, k, was set to 10, as in the publica-
tion [15].

For every combination of parameters, we have repeated
the experiment 500 times (except 250 times for F5, which has
a slow Java implementation). We must decide on a metric
for success of the steganalyzer: we take the proportion of
experiments in which the guilty actor was ranked in the top
5% most suspicious.

There are many combinations of parameters making up
one experiment, each requiring the examination of hundreds
of thousands of images. Performing all the experiments took
approximately 230 core days, distributed over a small clus-
ter.

4. RESULTS
Figure 1 displays the experimental results for ni = 100

images per actor. The array of charts varies the number of
actors (100, 400, 1600, horizontally) and embedding algo-
rithm (vertically). Within each chart, the x-axis gives the
payload in bpnc, and the y-axis the rate of success for the
steganalyzer, when the guilty actor was ranked in the top
5% by LOF. The different embedding strategies are denoted
by different point types.

There are some ways in which these charts show variation:
larger payloads are unsurprisingly more detectable but the
different embedding algorithms are of different security (of
which more shortly), and it is somewhat easier to find a
guilty actor in the top 5% of 1600 than the top 5% of 100
(a result replicating some in [15]). But most striking is the
consistency between all these experiments: for any given
payload size, where detection is not around random or per-
fect, the even embedding strategy is most detectable, the

linear strategy next most detectable, and the max strategies
least detectable. Max-greedy is less detectable than max-
random. Similar consistency is seen with ni = 50, 20, and
even ni = 10 although detection rates are much lower when
there is so much less evidence available, and if the perfor-
mance metric is changed to count the guilty actor in the top
n most suspicious rather than top x%. We will not bore the
reader with displays of such charts.

This represents an important lesson for a batch stegano-
grapher: it is substantially more secure to allocate payload
into the smallest total number of covers, picking largest ca-
pacity covers and filling them completely. Depending on the
detector and desired security, up to approximately twice as
large a payload can be embedded using the max strategies
than the linear or even strategies. Another way of looking at
this data is to conclude that the blind universal steganalyzer
has a weakness, which can be exploited by the embedder
choosing the max-greedy strategy.

One other item we highlight from Figure 1 is the curious
behaviour of JPHide&Seek: there is above-random detection
even for the smallest payloads when even or linear strategies
are used for embedding. It seems likely that JPHide&Seek
embeds either a minimal message length or includes some
sort of header, making it even more desirable to use as few
images as possible for stego payload.

We make a comparison of the security of the different em-
bedding algorithms, assuming that the best strategy (max-
greedy) is used, in Figure 2. This confirms results seen in ste-
ganalysis of individual images, for example as in [7], where
nsF5 is found to be the most secure choice, followed by F5
and JPHide&Seek, with Steghide substantially less secure
and OutGuess the worst.

5. FURTHER INVESTIGATIONS
We want to understand why the results of section 4 occur.

We focus on three particular questions:

(1) Why do the strategies which concentrate payload (max-
greedy and max-random) evade detection substantially bet-
ter than those which spread payload (linear and even)?

(2) Why do the strategies which use image capacity in the
allocation (max-greedy and linear) evade detection better
than those which do not (max-random and even)?

(3) Do the results represent a weakness of the blind universal
pooled steganalyzer, which can be fixed?

First, we can examine the problem by recalling that the
steganalyzer depends only on the L2-distance between the
centroids of each actor’s feature cloud (the PF-274 features
extracted from the entire set of images they transmit). What
matters to detectability, apart from the inner workings of
the LOF calculation, is how the the guilty actor’s centroid
is affected by embedding.

Let us fix a guilty actor, and write v1, . . . , vn for the fea-
ture vectors which are extracted from the cover images they
use. Correspondingly, let us write v′1, . . . , v

′

n for the fea-
ture vectors extracted from their transmitted objects. We
continue to write m1, . . . ,mn for the payload allocated into
each image by the guilty actor’s strategy. Thus if mi = 0
then v′i = vi, otherwise very likely v′i 6= vi. Write v̄ and
v̄′ for the guilty actor’s centroid of cover and stego images
respectively.
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Figure 1: Accuracy of the blind pooled steganalyzer, for five different embedding algorithms (charts verti-
cally), number of actors (charts horizontally), total payloads in bpnc (x-axis of each chart), and embedding
strategy: max-greedy (•), max-random (◦), linear (�), even (�). The y-axis is the proportion of experiments
in which the true guilty actor was ranked in the top 5% most suspicious actors. In all these charts, the
number of images per actor ni = 100.
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Figure 2: Comparison of different embedding algorithms, which follow the same colours and line style as
Figure 1.

Despite copious literature making use of these (and other)
features for classification of payload, we know little about
how payload size effects features. We know that it does affect
features, because steganography is detectable, and from [20]
we know that it is possible to construct an estimator for the
(relative) payload length from the stego features. In [20]
it is shown that even an ordinary least-squares estimator
has quite good performance, which would suggest a broadly
linear relationship between features and payload size.

So suppose that, abusing mathematical notation to reason
roughly about average distortion, the effect of payload on
features is approximately linear, i.e.

v′i ≈ vi +miδv

where δv is a direction in which stego objects tend to move,
then

v̄′ ≈ v̄ + δ̄v
∑

mi.

This of course neglects many details, including if stego ob-
jects move in different directions or at different rates depend-
ing on the cover or message (though this should all wash
out on average). However, it at least leads us to expect that
all embedding strategies should be equally detectable, as they
cause equal distortion to the guilty actor’s centroid when
the total payload is fixed.

Since this is manifestly not the case, our first investiga-
tion into the cause of (1) and (2) is to test the assumption
of a linear relationship between payload and distortion in
individual images. We picked an embedding algorithm and
a random cover image, and computed three feature vectors:

· v0, the cover features;

· v0.1, features from the image with a fixed payload of 10%
of its capacity;

· vp, features from the image with a random-length payload,
proportion p of its capacity.

On the left of Figure 3 we display scatterplots of

‖vp − v0‖
‖v0.1 − v0‖

(1)

against p. If the relationship between feature change and
(relative) payload is linear then we would expect to see a
straight line. The use of a fixed payload in the denominator

may create an artificial “pinch”near 0.1, but means that the
results can be displayed with a comparable y-axis.

We observe some sort of linear fit, and no sign of a sig-
nificantly nonlinear fit, although the extent of the relation-
ship depends on the embedding algorithm. (It shows that
the least-squares quantitative estimator is doing some work,
weighting towards relevant features and away from noisy
features, in order to have such good performance displayed
in [20].) We do not see a nonlinear relationship.

The authors found this puzzling, because it does not fit
with the observed behaviour of the different batch embed-
ding strategies. But then we remembered that the LOF
detector works on features which, in order to equalize their
weight and remove correlation, have been normalized, white-
ned, and then renormalized (we call this“normwhite space”).
So we performed an identical experiment but computing the
norms of (1) on features which are first subject to the same
operations. These are displayed in the middle of Figure 3.

This time the results are markedly different. There is a
strong nonlinearity, with larger payloads causing proportion-
ately less distortion than smaller ones. Observing the val-
ues on the y-axes, we see that payloads of near-full capacity
cause distortion only about 3–4 times as large as payload
at 10% of capacity. This phenomenon directly explains why
concentration of payload in few covers is the best type of
batch steganography against our universal pooled detector,
since the total distortion “cost” is much lower thanks to the
sublinear relationship.

How is it possible for the left and middle columns of Fig-
ure 3 to be so different, and how is a nonlinear relationship
compatible with the workings of linear least squares regres-
sion in [20]? To answer the first, consider that normalization
is a shear transform geometrically and (unlike PCT, which
is orthonormal) can magnify or reduce the angles between
vectors; vectors which are nearly parallel (such as stego dis-
tortion in these images, a fact which we verified but do not
include here for reasons of space) can become much less par-
allel when subject to shear, and that is exactly what happens
to stego features. To answer the second, we must simply ex-
pect that the regression manages to find a linear transform
which does the opposite, making stego distortion nearly par-
allel and thus reducing the nonlinear effect of payload.

We performed a number of investigations to try to ex-
plain the nonlinear relationship between (whitened, normal-
ized) features and payload. They revealed that, perhaps
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Figure 3: Further experiments to understand the optimality of concentrated payload. Five different embed-
ding algorithms, vertically. Left: relative payload versus feature distortion (relative to distortion at 0.1 bpnc)
in individual images. Middle: the same, but distortion calculated for normalized whitened features. Right:
capacity versus sensitivity to payload, in individual images. Each plot is from 10 000 images taken at random
from the entire database of 800 000.



unsurprisingly, not all features contain useful information
about payload. After whitening we should talk of “com-
ponents” rather than “features”, since each component is a
linear combination of features. For components with much
information, for example those with the largest eigenvalues
from PCT, the addition of payload causes apparently-linear
movement in one direction or the other. But particularly for
components with small eigenvalues from PCT, the addition
of payload simply causes noise, with the value moving in no
particular direction. Now consider that

‖vp − v0‖ =
√

(c1p − c1
0
)2 + · · ·+ (cmp − cm

0
)2 (2)

where cip is the i-th component of features from an image

with payload p. If some of these differences cip − ci0 consist

only of noise, (2) boils down to
√

cp2 + d, where c and d
have positive expectation. The explains the shapes seen in
Figure 3. Essentially it stems from the inclusion of some
noisy features/components which are not informative about
steganography. However, it seems impossible for a blind de-
tector to avoid this, since it cannot remove non-informative
features without some stego information.

Although the nonlinear phenomenon explains why the max
strategies are more secure than linear or even, we also want
to answer question (2), above. We can explain this quite
simply, by looking at the rate at which ‖vp −v0‖ grows with
p. In the third column of Figure 3, we plotted the capac-
ity of each image against ‖vp − v0‖/p. The latter quantity
we call sensitivity. Clearly, images with larger capacity have
less sensitivity (the statistical significance of the relationship
is extremely strong for each embedding algorithm). Thus
there is an additional advantage, as well as concentration in
as few covers as possible, of the max-greedy strategy because
it picks the least sensitive covers4.

Finally, we turn to question (3): can the detector be im-
proved in light of our new understanding? The authors think
not: there is no solution to restoring a linear payload rela-
tionship by avoiding whitening/normalization, because this
ruins the scales of the features and makes the LOF an incor-
rect measure of outliers. Although it makes the performance
of the different embedding strategies more equal, it does so
by lowering detectability of all of them (charts not included
for reasons of space).

6. CONCLUSIONS
We have tested the LOF-based anomaly detector from [15]

more widely, to show that it works against different embed-
ding algorithms and strategies, that it is quite sensitive to
payloads of around 0.1bpnc or lower, and hence real-world
steganographic algorithms (which excludes nsF5) are rather
insecure. The consistent lesson is that a greedy embedding
strategy, which concentrates payloads in as few covers of
largest possible capacity, is able to exploit a property of the
detector. The property is due to a nonlinear relationship be-
tween (unavoidably normalized) features and payload size,
which is an important insight for both embedders and de-
tectors.

We should verify that this is not merely a result for the
PF-274 feature set we have used in this work and it would
4It would not be in keeping with the philosophy of this paper
to allow an embedder directly to measure sensitivity of each
image in their embedding strategy, since it would require
them to know the feature set used by their opponent.

be helpful to develop a hypothesis test for the phenomenon.
This is a matter for future work.

We have also exposed a gap in the research on steganal-
ysis features, to understand their geometric structure and
the effects of steganographic payload beyond merely the ex-
istence of quantitative estimators. Further work is needed
to determine whether near-linearity of stego distortion can
be increased and exploited.

We must stress that much of the quasi-analysis of sec-
tion 5 arises because of the use of linear MMD in the LOF
distances. However, the only examination of an alterna-
tive (Gaussian kernel, [14]) showed weaker detection perfor-
mance. In theory, a nonlinear detector can have power pro-
portional to the square of the payload size, at least locally
(essentially the reason for the square root law of stegano-
graphic capacity), so further researching into alternative
MMD kernels is important. Another line of research would
be to replace LOF with a method more robust to noisy fea-
tures.

Finally, we might conjecture that all blind steganalysis
will have a similar weakness: features with pure noise cannot
be removed without knowledge of some stego data, leaving
a distortion which must always be nonlinear. It would be
interesting to formalize this and perhaps prove the general
optimality of greedy embedding. From the detector’s side,
we suggest that blind detection could be augmented by non-
blind feature selection, in which the feature set is tuned in
the direction of known stego algorithms.
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undetectable JPEG steganography: Dead ends
challenges, and opportunities. In Proc. 9th ACM
Workshop on Multimedia and Security, MM&Sec,
pages 3–14. ACM, 2007.

[8] A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. J. Smola. A kernel method for
the two-sample problem. pages 513–520, 2007.

[9] S. Hetzl. Implementation of the Steghide algorithm
ver. 0.5.1 (released October 2003).
http://steghide.sourceforge.net/, last accessed
April 2012.

[10] S. Hetzl and P. Mutzel. A graph-theoretic approach to
steganography. In Proc. 9th International Conference
on Communications and Multimedia Security, CMS,
pages 119–128. Springer, 2005.

[11] A. D. Ker. Batch steganography and pooled
steganalysis. In J. Camenisch, C. Collberg,
N. Johnson, and P. Sallee, editors, Proc. 8th
Information Hiding Workshop, volume 4437 of LNCS,
pages 265–281. Springer, 2006.

[12] A. D. Ker. Batch steganography and the threshold
game. In E. Delp III and P. Wong, editors, Security,
Steganography, and Watermarking of Multimedia
Contents IX, volume 6505 of Proc. SPIE, pages
0401–0413. SPIE, 2007.

[13] A. D. Ker. Perturbation hiding and the batch
steganography problem. In K. Solanki, K. Sullivan,
and U. Madhow, editors, Proc. 10th Information
Hiding Workshop, volume 5284 of LNCS, pages 45–59.
Springer, 2008.

[14] A. D. Ker and T. Pevný. A new paradigm for
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APPENDIX

A. LOCAL OUTLIER FACTOR
Suppose that we are given a set P of points, with a metric

d : P × P → R and an integer parameter 1 < k < |P |.
For this exposition we assume no exact duplicates in P or

exactly tied distances between members of P , which simpli-
fies the description. For full details, see the original publi-
cation [1].

The reachability distance of point p from q, rk(p, q),
is the greater of d(p, q) and d(q, q′), where q′ is q’s k-nearest
neighbour. Compared to the metric d, the reachability dis-
tance reduces statistical fluctuations for close objects, with
smoothing controlled by the parameter k.

Fix a point p, and write Pk for the k-nearest neighbour-
hood of p. The local reachability density of p is defined
as an inverse of the average reachability distance of point p
from all points q ∈ Pk,

lrdk(p) = k

(

∑

q∈Pk

rk(p, q)

)

−1

,

and the local outlier factor (LOF) of p is

lofk(p) =
1

k

∑

q∈Pk

lrdk(q)

lrdk(p)
.

Thus lofk(p) captures the degree to which p is further from
its k-nearest neighbours than they are from theirs. Defining
it as a relative number makes the method adaptive in the
sense that (a) it does not depend on absolute values of dis-
tances d(p, q) and (b) outliers can be detected in dense as
well as in sparse regions of P .


