
From Blind to Quantitative SteganalysisTom�a�s Pevn�ya, Jessia Fridrihb�, Andrew D. KeraINPG - Gipsa-Lab, 961 rue de la Houille Blanhe, 38402, Grenoble, FranebDepartment of Eletrial and Computer Engineering, Binghamton University,State University of New YorkOxford University Computing Laboratory, Parks Road, Oxford OX1 3QD,EnglandABSTRACTQuantitative steganalyzers are important in forensi steganalysis as they an estimate the payload,or, more preisely, the number of embedding hanges in the stego image. This paper proposes ageneral method for onstruting quantitative steganalyzers from features used in blind detetors.The method is based on support vetor regression, whih is used to learn the mapping between afeature vetor extrated from the image and the relative embedding hange rate. The performaneis evaluated by onstruting quantitative steganalyzers for eight steganographi methods for JPEG�les, using a 275-dimensional feature set. Error distributions of within- and between-image errorsare empirially estimated for Jsteg and nsF5. For Jsteg, the auray is ompared to state-of-the-artquantitative steganalyzers. 1. INTRODUCTIONThe objetive of steganalysis is to detet steganographi hannels. Tehnially, steganography isonsidered broken when the mere presene of the seret message an be established. In pratie,however, the investigation is not likely to stop when the use of steganography is disovered. Theanalyst may want to unover more details about the overt ommuniation, suh as the number ofmodi�ations due to steganographi embedding. Beause the number of embedding hanges is ingeneral strongly orrelated with the message length, one an obtain valuable forensi informationabout the type of hidden data or the fat that the message is enrypted (if the message lengthestimates are lustered around multiples of some typial ipher blok lengths).Steganalyzers that an estimate the relative number of embedding hanges (the hange rate) arealled quantitative. They are typially built from heuristi priniples and always rely on full knowl-edge of the embedding algorithm (see, e.g., Refs. 2, 4{6, 10, 13, 25, 27). Even though it is possibleto identify within these attaks some general priniples for onstruting quantitative steganalyzers,their design is still more art than a well-developed methodology. This is on�rmed by the fatthat the vast majority of urrent quantitative attaks only over LSB embedding. Although thereexist a few quantitative steganalyzers for other embedding operations, suh as �1 embedding inthe spatial domain23 or the embedding operation of F5,6 quantitative steganalyzers are missing formost steganographi algorithms despite the fat that essentially all of them an be reliably detetedby blind steganalyzers.This paper proposes a novel approah to quantitative steganalysis that is quite general anddoes not need detailed knowledge of the embedding mehanism. The basi idea is to turn a blind� Jessia Fridrih: E-mail: fridrih�binghamton.edu, Telephone: +1 607 777 6177, Fax: +1 607 777 4464



steganalyzer into an estimator of the hange rate by learning the relationship between the position ofstego image features and the hange rate. In blind steganalysis, images are modeled using featuresdesigned to be sensitive to steganographi embedding. It works when the lusters of over andstego image features an be separated.14, 16, 20, 26 Beause the lusters' separation is a deterministifuntion of the hange rate, one ould oneivably train a multi-lassi�er to detet a small numberof di�erent payloads. Pursuing this idea further, it should be possible to build an estimator ofthe hange rate using regression by mathematially desribing the relationship between the featurevetor and its position in the feature spae. This idea should work for any ontinuous-valued featurespae within whih a given steganographi system is detetable.In our work, we explore ordinary linear least square regression (OLS) and its kernelized versionalled support vetor regression (SVR), essentially a data-driven method similar in spirit to asupport vetor mahine. An important design element of every SVR is the penalization of theregression error: more stable results are typially obtained using non-quadrati penalization, suhas the �-insensitive loss or the Huber loss.This approah to quantitative steganalysis has a very important advantage over previous art:we an design a quantitative steganalyzer without any knowledge of the embedding mehanism.All that is required is aess to a database of images embedded with a range of known payloads.Suh images an be generated if the steganalyst has aess to the embedding algorithm but notneessarily to its inner workings (e.g., if only an exeutable �le is available). There does haveto exist a feature set and a blind steganalyzer that an reliably detet the embedding, and theauray of the resulting quantitative steganalyzer depends on the sensitivity of the feature set tothe attaked steganographi sheme.This paper is organized as follows. Setion 2 presents the methodology for onstruting quantita-tive steganalyzers from features. The methodology is evaluated experimentally in Setion 3, wherewe report the auray of quantitative steganalyzers for eight steganographi shemes. Setion 4ontains detailed analysis of the estimator error for Jsteg and nsF5 by deomposing it into within-image and between-image omponents. For Jsteg, the results are ompared with a state-of-the-artquantitative steganalyzer. The paper is onluded in Setion 5.2. APPROACHIn this setion, we desribe the basi method for onstruting hange rate estimators by learningthe relationship between features' loation and the hange rate, using regression on some trainingset of stego features and their orresponding hange rates. By hange rate we mean the ratiobetween the total number of embedding hanges and the number of over elements that an beused for embedding. We favor estimating the hange rate as opposed to the relative messagelength, beause the features are sensitive to the number of embedding hanges and not to thelength of the message. The relationship between both quantities is stohasti and an be furthershaped by matrix embedding and soure oding.The proess of extrating steganographi features from an image is a mapping f : C 7! Rd fromthe spae of all overs, C, to a d-dimensional feature spae. In blind steganalysis, mahine learningtools are used to �nd a distinguishing statisti S : Rd 7! R, on whih a threshold is set to lassifyimages to the lasses of over and stego.15 In ontrast, in our urrent problem we seek a funtion : Rd 7! [0; 1℄ revealing the relationship between the loation of the features and the hange rate.



To formalize the problem, let X = � (xi; yi)jxi 2 Rd ; yi 2 [0; 1℄; i 2 f1; : : : ; lg	 denote l samplesonsisting of feature vetors xi = f(i) omputed from l images i embedded with relative numberof embedding hanges yi 2 [0; 1℄. Our goal is to onstrut a quantitative steganalyzer by �nding afuntion  ̂ : Rd 7! [0; 1℄ that minimizes the error on X, or ̂ = argmin 2F 1l lXi=1 e ( (xi); yi) ; (1)where e : R � R 7! R+0 is an error funtion (also alled a loss funtion) and F is an appropriatelyhosen lass of funtions  : Rd 7! [0; 1℄. For example, in linear ordinary least square (OLS)regression, e(ŷ; y) = (ŷ � y)2 and F = � (x) = w � x� bjw 2 Rd ; b 2 R	 .The error funtion e(x; x0) and the lass of funtions F inuene the auray of the resultingregressors  ̂: It is possible that the desired auray is not ahieved for a given feature set simplybeause of a wrong ombination of e and F : It will be shown later that the omputational omplexityof solving the optimization problem (1) also needs to be taken into onsideration.In this paper, we solve the regression problem (1) by linear ordinary least-square regression(OLS) and by support vetor regression (SVR).22 While the former is very simple, intuitive, andhas a low omputational omplexity, the latter an reveal more ompliated non-linear dependeniesat the ost of inreased implementation omplexity. Assuming the reader is familiar with OLS, therest of this setion desribes the main ideas behind SVR. More details an be found in a tutorialon SVR.222.1. Support Vetor RegressionThe main idea behind SVR is to map the model spae Rd through a possibly non-linear data-driven mapping � : Rd 7! H into a high-dimensional vetor spae H; where a linear regressionis performed. Thus, for the set of funtions F over whih the optimization is arried, we haveF = f (x) = w � �(x) � bjw 2 H; b 2 Rg : The spae H and funtion � must be hosen suh thatthere exists a positive de�nite funtion (alled the kernel) k : Rd �Rd 7! R satisfying �8x;x0 2 Rd�(k(x;x0) = h�(x); �(x0)iH) ; where h�; �iH is a dot produt in H: The funtion � and the spae Hare in pratie de�ned impliitly by the kernel k: The most popular kernels are the Gaussian kernelk(x;x0) = exp ��kx� x0k2� (2)and the polynomial kernel k(x;x0) = (hx;x0iRd + 1)d :Depending on the rihness of the funtion lass F , the problem (1) an be ill-posed. In orderto stabilize it, SVR introdues an additional term kwk2H that penalizes omplex solutions. Hene,the optimization problem solved by SVR attains the following formminw2H;b2Rkwk2H + C 1l lXi=1 e (w � �(xi)� b; yi) ; (3)where C is a parameter desribing the trade-o� between omplexity of the solution and error onthe training set.



Ideally, the error funtion e should be determined from the statistial properties of the noise infeatures. In our ase, however, the noise properties are hard to estimate due to the high dimension-ality and beause the noise is a omplex superposition of over work irregularities and the randomseletion of over elements used for embedding. In order to make the optimization problem (3)omputationally tratable, the error funtion e should be onvex. The most popular error funtionsin SVR are the �-insensitive losse�(ŷ; y) = (jŷ � yj � � if jŷ � yj > �0 otherwise, (4)and the Huber loss (Ref. 22 lists other examples). We tested both error funtions and eventuallydeided to use the �-insensitive loss beause it gave very similar results as the Huber loss. Notethat the free parameter � determines the width of the tube where errors are not penalized (i.e.,the estimates within this tube are treated as estimated perfetly). In theory, � should be set tothe variane of noise in features.21 However, as already explained above beause the statistialproperties of the noise are unknown in our ase, the parameter �, together with the kernel parameterswere determined using exhaustive searh.A support vetor regressor with the Gaussian kernel (2) and �-insensitive loss (4) has three hyper-parameters that need to be set prior to training (solving (3)). They are: the penalization parameterC; the width of the Gaussian kernel ; and �. The hoie of the hyper-parameters has a signi�antinuene on the ability of the regressor to generalize (to aurately estimate the hange rate onsamples not in the training set). Sine there is no optimal method to set them, in our experimentswe used a searh on a prede�ned set of triplets (C; ; �), on whih the generalization was estimatedby ross-validation. The implementation details of the searh are desribed in Subsetion 3.2.3. EXPERIMENTS ON EIGHT JPEG STEGOSYSTEMSThis setion presents a pratial evaluation of the proposed method by testing quantitative stegan-alyzers for eight steganographi algorithms with diverse embedding mehanisms: JP Hide&Seek,12Jsteg,24 Model Based Steganography without debloking (MBS1),19 MMx,11 F5 with shrinkageremoved by wet paper odes with matrix embedding turned o� (nsF5),8 OutGuess,17 PerturbedQuantization,7 and Steghide.9 The estimators' auray is evaluated on images with relative pay-loads uniformly distributed on [0; 1℄, meaning that the length of the message was hosen randomlybetween zero and the maximum embedding apaity for eah algorithm and eah image.All experiments were performed on single-ompressed graysale JPEG images with quality fator80 reated from a database of 9163 raw images taken by digital ameras spanning 23 di�erent models.Prior to any proessing, the images were divided into two sets of equal size (� 4600 images per set).One set was used exlusively for training the regressor, while the other set was used exlusively fortesting its performane.3.1. Regressor trainingAs a feature set f ; we used the 274 \alibrated Merged features" from Ref. 16, augmented withthe number of non-zero DCT oeÆients, n0, as an additional 275th feature. All 275 featureswere normalized to have zero mean and unit variane. The normalization oeÆients were alwaysalulated on the training set.



The hyper-parameters (C; ; �) were determined by n-fold ross-validation using the followingtwo-phase algorithm to derease the omputational omplexity. In the �rst phase, the parameterswere estimated by 5-fold ross-validation on the following grid(C; ; �) 2 S1 = ��10i; 2j ; 0:005 � k� j i 2 f�3; : : :4g;j 2 f�11; : : : ;�5g; k 2 f1; 2; 3; 4gg :The triplet (C1; 1; �1) with the least estimated generalization error on S1 was used to seed thesearh in the seond phase. The searh in the seond phase was performed on the gridS2 = ��10i; 2j ; 0:005 � k� j i; j 2 Z; k 2 N	 :In eah iteration, the point with least generalization error (again estimated by 5-fold ross-validation) was heked to see whether it lay on the grid boundary. If so, the error was estimatedon the neighboring points from the set S2 and the hek was repeated. If not, the searh wasstopped and the triplet (C; ; �) with the least estimated generalization error was used for training.The idea behind the two-phase searh is to ensure that the point with least estimated gen-eralization error is not the boundary point of the explored set. Under the assumption that thegeneralization error surfae is onvex, whih is very reasonable, this algorithm keeps the number ofexplored points relatively low, while returning a suitable set of hyper-parameters.3.2. General resultsWe prepared two quantitative steganalyzers for eah algorithm. One used plain OLS regression,while the other used SVR as outlined above. Beause the error distribution of quantitative stegan-alyzers has typially heavy tails3 (we will see in Subsetion 4.2 that this is so for our steganalyzertoo), we evaluate the performane of the regressors using robust statistis rather than the variane.Figure 1 shows a satter plot of the estimated hange rates against the true values. Table 1 displaysthe sample Median Absolute Error (MAE) and bias omputed from all estimates. We an see thatall quantitative steganalyzers exept steganalyzer for PQ have the MAE of the estimation of relativehange-rate of the order of 10�3, with an order of magnitude lower bias. The OLS regressor has aslightly higher MAE but exhibits a lower bias for several embedding algorithms. The fat that themedian absolute error of the OLS regression is of the same order as the error of SVR suggests thatthe features hange almost linearly with the number of embedding hanges. Despite the slightlyhigher MAE of the OLS regression, it o�ers an attrative hoie beause of its low omputationalomplexity: the searh for hyper-parameters and subsequent training of the SVR took about 1 dayon a 64bit AMD Opteron 2.4GHz, while the time to train the OLS regression on the same mahineand training set was less than 1 minute.4. DETAILED RESULTS FOR JSTEG AND NSF5This setion presents analysis of the error distributions of quantitative steganalyzers for nsF5 andJsteg. We hose these two algorithms as representatives of the least and most detetable stegoalgorithms for JPEG, respetively, and beause their simple embedding mehanism allows thepreise ontrol of the hange rate required for our experiments.We �rst onsider how the estimation error is inuened by payload size. Then we deompose theerror into two fators: that due to the over, and that due to loation of the payload. This allows
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(b) MBS1
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(d) nsF5
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(f) SteghideFigure 1. Satter plot showing the hange rate estimated by SV regressors with respet to the true hangerate for JP Hide&Seek, Model Based Steganography without debloking (MBS1), MMx, no-shrinkage F5(nsF5), OutGuess and Steghide; Jsteg and Perturbed Quantization were omitted for spae reasons. Allestimates were made on images from the testing set. The dashed line orresponds to perfet estimation.



SVR OLSAlgorithm MAE Bias MAE BiasJP Hide&Seek 5:24�10�03 2:41�10�04 7:91�10�03 �1:70�10�04Jsteg 1:90�10�03 2:50�10�04 8:38�10�03 �5:29�10�04MB1 6:63�10�03 �1:63�10�04 9:07�10�03 3:86�10�05MMx 2:70�10�03 1:08�10�04 3:25�10�03 1:58�10�04nsF5 4:82�10�03 �2:51�10�04 8:39�10�03 �5:29�10�04OutGuess 2:48�10�03 3:67�10�04 2:53�10�03 1:51�10�04PQ 4:83�10�02 �3:78�10�02 5:69�10�02 �2:89�10�03Steghide 2:04�10�03 1:80�10�04 3:23�10�03 2:60�10�04Table 1. Median absolute error (MAE) and bias for OLS regressor and SVR with Gaussian kernel and�-insensitive loss, on eight steganographi algorithms. The auray is measured on the testing set.us to ompare the nature of our estimation error against quantitative estimators for spatial-domainLSB replaement. Finally, we ompare the auray of our quantitative estimator for Jsteg withprior art.254.1. Compound errorThe auray of steganalyzers presented in Subsetion 3.2 was estimated on images from the trainingset embedded with messages of random length. To �nd out how the errors depend on the numberof embedding hanges, nsF5 and Jsteg were fored to produe a prede�ned set of 21 hange rates� 2 B , f0; 0:025; 0:05; : : : ; 0:475; 0:5g: To be absolutely preise, � = n0 ; where  is the number ofhanged DCT oeÆients and n0 is the total number of all non-zero DCT oeÆients in the over.
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(b) biasFigure 2. Median absolute error and bias of quantitative steganalyzers for Jsteg and nsF5, with respetto hange rate. The graph for nsF5 is shown only up to hange rate � = 0:45; beause at higher rates thealgorithm frequently fails to embed the message.



Figure 2 shows the auray of the steganalyzers from Subsetion 3.2 for eah hange rate fromB. From 2(a) we an see that the MAE of the quantitative steganalyzer for nsF5 inreases with thepayload, but remains in the same order of 10�3. Figure 2(b) reveals that the inrease in MAE is dueto inreased bias of the estimator on images with higher payload. The auray of the estimatorfor Jsteg remains stable with respet to the image payload.It is interesting to observe that the auray of estimators on over images does not deviate,even though over images were not inluded in the training set (the probability that the embeddingrate will be exatly zero is almost zero).4.2. Within- and between-image errorIn general, payload size estimation error an be deomposed into three parts, as �rst desribed inRef. 3 and extended in Ref. 1. When a payload is embedded, the number of embedding hangesdepends on random orrelations with the over, and so this does not indiate exatly the size ofpayload (in our experiments we have eliminated this deviation by measuring embedding hangesdiretly, but it ours when the estimator is applied to genuine stego images). Then the remainingerror an be partly attributed to random plaement of the payload in the over, alled within-imageerror, and the rest to the over itself, alled between-image error. In Ref. 1 a payload-size estimatorp̂ is explained in terms of the true payload size p and three error termsp̂ = p+ Zov + Zpos + Zipwhere Zov is the between-image error, Zpos the within-image error due to payload position, andZip the unertainty in the embedding hange rate. These errors are not truly independent, butan be approximately separated and ompared by repeatedly embedding di�erent payloads in eahover.We piked six embedding hange rates, � 2 f0; 0:025; 0:05; 0:125; 0:25; 0:375g, and embedded200 random payloads into eah of the 4567 images in the training set, using both Jsteg and nsF5.We term eah ombination of embedding algorithm, hange rate, and over image, a ell, so thateah ell ontains estimates of 200 equally-sized but di�erently-loated payloads (exept for ellswith no payload, for whih there is only one possible objet per over). The total experimentalbase omprises 9.1M attaks.First, we measure the shape of the within- and between-image errors, without regard to theirmagnitude. A good way to examine the tails of a distribution is with a log-log empirial df plot:piking a single ell for eah of Jsteg and nsF5, we display suh plots for the 200 estimates, in theupper part of Fig. 3 (the data for all suh plots has the mean subtrated, to enter the distribution,and the Gaussian �t is seleted to math the sample variane). There appears to be an exellent �twith the Gaussian distribution, and we see similar results aross all images and all embedding rates.A summary of these �ts is found in two olumns of Tab. 2: we omputed Shapiro-Wilk tests18 fornormality in every ell, and display the proportion of ells with p values above 0:1. If the ells aretruly Gaussian, we would expet that 90% of ells would pass this test, and the displayed data arein aordane with this predition. More preisely, we an say that any deviation from normalityis small enough to be undetetable with 200 samples per ell.One we know that the estimates within eah ell are Gaussian, we an safely average them to(almost entirely) remove the within-image error. Then the ell means desribe the between-imageerror, and we plot log-log empirial dfs for one partiular embedding rate in the lower part of
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(b) Within-image error, nsF5
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(d) Between-image error, nsF5Figure 3. Log-log tail plots of empirial distributions of within- (above) and between- (below) image errors,for Jsteg (left) and nsF5 (right) embedding. Gaussian and Student t �ts are shown.Fig. 3. These data are learly not Gaussian, but there is a good �t with the Student t-distribution.The number of degrees of freedom in the t-distribution is estimated around 3 (this is the ase forall embedding rates), but we see in the tail plots that the distribution tails seem slightly heavierand in fat they �t better with around 2 df. This aords losely with what was observed for LSBreplaement estimators in Refs. 1 and 3. It is somewhat surprising that quantitative steganalysis ofJPEG embedding via SVR displays the same harateristis as quantitative steganalysis of spatial-domain embedding via strutural steganalysis, partiularly sine their modes of operation are sodi�erent: there was no partiular reason to believe that their tails should deay at the same rate,but this does appear to happen. Inidentally, the heavy between-image tails mean that it wouldhave been unsound to measure sample variation or standard deviation (or mean square error) forour estimators: the population variane may well be in�nite, but even if �nite the sample varianewill onverge only very slowly to the true value.



Jsteg nsF5Shapiro- Between Within Flips Shapiro- Between Within Flips� Wilk IQR IQR IQR Wilk IQR IQR IQRp > 0:1 �Q(Zov) �Q(Zpos) �Q(Zip) p > 0:1 �Q(Zov) �Q(Zpos) �Q(Zip)0 � 3.63 0.00 0.00 � 7.74 0.00 0.000.025 90.2% 3.23 1.52 0.28 93.9% 6.99 2.81 0.290.05 89.9% 3.02 1.91 0.39 93.9% 6.79 3.52 0.410.125 90.2% 2.79 2.57 0.59 93.7% 6.93 4.78 0.620.25 89.8% 2.87 3.25 0.78 94.2% 8.31 6.77 0.810.375 90.3% 3.69 3.56 0.87 94.2% 10.63 8.47 0.91�10�3 �10�3 �10�3 �10�3 �10�3 �10�3Table 2. Comparison of magnitudes of between- and within-image errors, and embedding hange uner-tainty, measured by inter-quartile range (IQR) for six embedding hange rates. Also shown is the numberof ells passing the Shapiro-Wilk test for normality of within-image error, at 10% signi�ane.Finally, we ompare the magnitudes of the within- and between-image errors, also inludingthe theoretial preditions for embedding hange rate variation (if there are n loations and 2�loations are used for payload, without matrix or soure oding, under mild assumptions aboutrandom embedding the number of embedding hanges will follow a Bi(n; �) distribution; n is notequal for Jsteg and nsF5 beause Jsteg does not use oeÆients equal to 1 and F5 does not use DCoeÆients). Bias is assigned to between-image error and, for this analysis, disounted. Beauseof the heavy tails in the between-image error, we use inter-quartile range (IQR) as a measure ofspread. For 6 embedding hange rates, the IQRs of these three error fators are displayed in Tab. 2.Beause the errors Zip and Zpos depend (somewhat) on the overs, the table displays the averagevalues for these IQRs.Similarly to the results for LSB replaement estimators in Refs. 1 and 3, the magnitude of Zipis generally negligible. Here, the IQRs of within-image error Zpos are not negligible, even for fairlysmall embedding rates: this is in ontrast to the spatial-domain estimators. Also, the between-image error Zov remains stable or inreases at larger embedding rates, whereas the opposite wasobserved to hold for spatial-domain estimators.4.3. Comparison with prior art | JstegIn this experimental setion, we ompare the auray of our quantitative steganalyzer for Jstegwith the most aurate steganalyzers known today. We hose Jsteg beause it is urrently thebest studied JPEG steganography algorithm with many known aurate quantitative steganalyzers.As shown in Ref. 25, it is possible to onstrut quantitative steganalyzers for Jsteg by adaptingsteganalysis methods developed for LSB steganography in the spatial domain.Among the multitude of methods desribed in Ref. 25, we seleted Jpairs and Weighted Non-steganographi Borders Attak (WB) and ompared their performane to the quantitative ste-ganalyzer developed in Subsetion 3.2. Aording to Ref. 25, the Jpairs quantitative stegana-lyzer was one of the most aurate quantitative steganalyzers for Jsteg. The algorithms wereompared on the 4567 images in the testing set, at 21 embedding hange rates from the set



� 2 B , f0; 0:025; 0:05; : : : ; 0:475; 0:5g (the images were the same images used in the previoustwo subsetions.)Figure 4 shows that the quantitative steganalyzer with SVR has almost always better perfor-mane than both Jpairs and WB attaks. Moreover, its performane is more stable with respet tothe hange rate. Contrary to the onlusion reahed in Ref. 25, we found that the WB attak wasmore preise than Jpairs attak; this disrepany ould be aused by us using a di�erent databaseof images. Note, though, that Fig. 4 over-states the auray of JPairs, beause the JPairs methodsometimes fails to produe an estimate at all. This happens most often for large embedding rates:for � = 0:375, as many as one third of estimates fail. The SVR and WB methods never fail toprodue an estimate. 5. CONCLUSIONUp until now, quantitative steganalysis was a olletion of lever triks developed for a rathersmall set of spei� embedding methods. Moreover, there existed an alarming absene of a solidfoundation that would enable easy onstrution of quantitative attaks for arbitrary steganographisystems. In this paper, we proposed a new approah to quantitative steganalysis that is generaland widely-appliable to essentially any embedding method, without neessarily knowing the exatdetails of the embedding algorithm. The idea is to use the features from blind steganalysis and modelthe relationship between the features' loation and the hange rate (relative number of embeddinghanges) using regression. Indeed, it is quite feasible to expet that when a steganographi methodis detetable using blind steganalysis, we should be able to extrat some quantitative informationfrom the feature vetor rather than just the binary membership of the set of over or stego images.On the example of eight steganographi algorithms in the JPEG domain, we have demonstratedthe power of the proposed approah and showed that quantitative steganalyzers an be onstrutedfor stegosystems for whih no quantitative attaks were onstruted so far. Moreover, the aurayappears to be at least as good as the auray of known quantitative steganalyzers (this was shown
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