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Abstract. In this paper, we use the previously proposed calibrated
DCT features [9] to construct a Support Vector Machine classifier for
JPEG images capable of recognizing which steganographic algorithm was
used for embedding. This work also constitutes a more detailed evalua-
tion of the performance of DCT features as in [9] only a linear classifier
was used. The DCT features transformed using Principal Component
Analysis enable an interesting visualization of different stego programs
in a three-dimensional space. This paper demonstrates that, at least
under some simplifying assumptions in which the effects of double com-
pression are ignored, it is possible to reliably classify stego images to
their embedding techniques. The classifier is capable of generalizing to
previously unseen techniques.

1 Introduction

The goal of steganography is to hide the very presence of communication by hid-
ing messages in innocuous looking objects, such as digital media files. The orig-
inal object, also called the cover object, is slightly modified to obtain the stego
object that carries the secret message. In a symmetric communication scheme,
the embedding process depends on a secret (stego key) shared between both
communicating parties. The main requirement of steganalysis is undetectability
of the hidden data by an unauthorized party who knows all details of the embed-
ding mechanism and the source of cover objects but does not have the stego key
(Kerckhoffs’ principle). The concept of steganographic security (undetectability)
was formalized, for example, in [2,5,25,14].

Methods for discovering the presence of hidden messages and determining
their attributes belong to steganalysis. In practice, a steganographic scheme is
considered secure if no existing steganalytic attack can be used to distinguish
between cover and stego objects with success better than random guessing [6].

Steganalytic methods can be roughly divided into two categories. The first
category is formed by methods targeted to a specific embedding technique, cap-
italizing on the assumption that we know the embedding algorithm [10]. The
second category is formed by blind approaches in which the knowledge of the
embedding algorithm is not assumed [9,8,3,4]. Instead, most blind approaches



assume that one can somehow characterize all “natural images” using an appro-
priate set of features that should be as sensitive to steganographic modifications
as possible. A classifier is then built to distinguish in the feature space between
natural images and stego images.

As one can expect, targeted approaches should provide better reliability and
accuracy than blind approaches. Targeted methods range from very specific sim-
ple ideas that pertain to a specific implementation to more general methods that
address a general embedding paradigm, such as LSB embedding [10,7], and fi-
nally to methods that can be easily adjusted to address a very large spectrum
of data hiding methods (e.g., detection of additive signals, such as ±1 embed-
ding [22,16,15]). The disadvantage of targeted methods is that their design can-
not be automatized and new techniques might have to be developed each time
a new steganographic methodology appears. This problem of extensibility is re-
moved by blind approaches.

From a certain point of view, however, there is no difference between targeted
and blind approaches as they both benefit from progress in the other. In fact, in
each targeted method one or more quantities (distinguishing statistics [10]) are
calculated, some with a definite meaning, e.g., an estimate of the message length,
and then thresholded to reach a decision about the presence of hidden message.
It is certainly possible to add such distinguishing statistics to blind steganalyz-
ers and further improve their performance. Because distinguishing statistics are
designed to be sensitive to embedding changes of certain kind, they also provide
guiding principles for constructing good features. This was the case with features
designed for DCT coefficients of JPEG files [9]. The idea of calibration, which
was originally invented for targeted attacks against F5 [10] and OutGuess [10],
was adopted for construction of calibrated features that are sensitive to embed-
ding modifications but exhibit less variation from image to image. Based on the
results quoted in [9,17] and the results shown in Section 3, classifiers based on
these features currently achieve the most reliable and accurate performance for
blind steganalysis of JPEG images. This is why they were chosen for this study.

The goal of this paper is to construct a classifier for JPEG images capable of
not only distinguishing cover images from stego images but also assigning stego
images to known JPEG steganographic techniques. Such a tool is essential for
steganalysis in the wide sense (forensic steganalysis) whose main goal is to re-
cover the hidden data. Obviously, the first step is to identify the stego algorithm
used to embed the data. In this paper, we use the calibrated DCT based fea-
tures [9] calculated directly in the DCT domain to construct a Support Vector
Machine (SVM) classifier. We focus on steganalysis of JPEG images because the
JPEG format is by far the most common image format in use today. As our goal
is to investigate the fundamental issues associated with building such classifier
rather than constructing a ready-to-use application, we constrained ourselves
to a database of test images with known processing history and origin. This
gives us the possibility to better understand the influence of processing, analyze
the outliers, and identify the limitations of the proposed approach. Also, in this
study we chose to ignore the difficult issue of double compression by presenting



the cover images compressed with the same quality factor as the one used for
the stego images.

In the next section, first we briefly discuss previous art in blind steganalysis
and the DCT-based features. In Section 3, we give the implementation details
of SVMs used in this paper, we discuss various issues associated with train-
ing and testing procedures, and describe the image database. Section 4 starts
with building two-class SVMs for individual steganographic techniques. We also
include a comparison of the performance of DCT features with wavelet-based
features [8] on the most popular JPEG stego programs. The section continues
with an attempt to visualize the stego programs in the feature space transformed
using the Principal Component Transformation. Then, we give experimental re-
sults obtained from a universal steganalyzer designed to distinguish between two
classes of cover and stego images. Finally, at the end of Section 4 we present and
analyze the results of experiments with the multi-class steganalyzer. The paper
is concluded in Section 5.

2 Blind JPEG Steganalysis

The idea to use a trained classifier to detect data hiding was first introduced in a
paper by Avcibas et al. [3]. In this paper, image quality metrics were proposed as
features and the method was tested on several robust watermarking algorithms as
well as LSB embedding. Avcibas et al. [4] later proposed a different set of features
based on binary similarity measures between the LSB plane and the second
LSB plane capitalizing on the fact that most steganographic schemes use the
LSB of image elements as the information-carrying entity. Farid [8] constructed
the features from higher-order moments of distribution of wavelet coefficients
and their linear prediction errors from several high-frequency sub-bands. The
same authors also showed that SVMs generally provide better performance as
classifiers compared to linear classifiers. Other authors have investigated the
problem of blind steganalysis using trained classifiers [23,11].

The steganalyzer described in this paper is based on features obtained from
the DCT coefficients as described in [9]. Calculating the features directly in the
JPEG domain provides certain attractive features. First, we expect the biggest
sensitivity for features calculated in a domain in which the embedding changes
are lumped — the DCT domain. Second, targeted analysis showed us the benefit
of calibration, which is the process of estimating the macroscopic properties of
the cover image from a slightly geometrically deformed decompressed stego image
recompressed with the same quantization matrix.

The DCT features are constructed from 23 vector functionals f of three
types — 17 first order functionals, 4 second order functionals, and 2 blockiness
functionals. The first order functionals are histograms of 5 lowest-frequency AC
DCT modes, the global DCT histogram, and 11 dual histograms (distribution
of a certain value d among all 64 DCT modes for d = {−5, . . . , 5}). The higher
order functionals capture the inter-block dependency of DCT coefficients. They
include the variation of coefficients (sum of absolute values of differences of DCT



coefficients from neighboring blocks) and 3 quantities derived from co-occurrence
matrices. The two blockiness functionals are the sum of discontinuities along 8×8
block boundaries and they are also the only functionals calculated in the spatial
domain.

The values of the functionals f1, f2, . . . , f23 for the cover image are estimated
from a slightly geometrically deformed (e.g., cropped by a few pixels) stego
image recompressed using the same quantization table. Denoting the estimated
functionals as f̂1, f̂2, . . . , f̂23, the final features are calculated as the L1 norm
‖fi − f̂i‖ between the functional f calculated from the stego image and the
same functional calculated from the cropped and recompressed stego image.
The logic behind this choice for features is the following. The cropping and
recompression produce a “calibrated” image with most macroscopic features
similar to the original cover image. This is because the cropped stego image is
perceptually similar to the cover image and thus its DCT coefficients should have
approximately the same statistical properties as the cover image. The cropping
is important because the 8×8 grid of recompression “does not see” the previous
JPEG compression and thus the obtained DCT coefficients are not as influenced
by previous quantization (and embedding) in the DCT domain. One can think
of the cropped / recompressed image as an approximation to the cover image or
as a side-information.

3 Constructing Classifiers

3.1 2-class Support Vector Machines

Support Vector Machines are the tool of choice for steganography classifiers [8,17].
However, in most papers dealing with steganalysis, the authors rarely provide
implementation details. We strongly believe that providing the details is nec-
essary to enable fair independent verification of the reported results by peers.
Thus, in this section, we describe all important elements of our realization of
classifiers using SVMs.

Despite the advantages and simplicity of linear Support Vector Machines
(SVM), in most applications, they are not sufficient, since we usually deal with
noisy data in non linearly separable regions. SVMs with nonlinear kernels and
the penalty parameter C can deal both with nonlinearity and outliers. The price
of this extension is that before the training can start, we have to determine the
penalty parameter C and the kernel and its parameters. There exist many differ-
ent kernels that can even be combined together. In our preliminary experiments,
we tried the linear, Gaussian, polynomial, and exponential kernels. As the Gaus-
sian kernel (exp(−γ‖x− y‖2)) gave us the best overall results, we used it in all
experiments described in this paper. The Gaussian kernel has one parameter γ
controlling its width. The extended SVM capable of dealing with outliers has
an additional penalty parameter C. These parameters affect the overall perfor-
mance of the classifier and are highly data/problem dependent. Following the
guide [12], the parameters were determined through a search on a multiplicative
grid (γ,C) ∈ {

(2i, 2j)|i ∈ {−5, . . . , 3}, j ∈ {−2, 9}} with 5-fold cross-validation.



This means that for each pair (γ, C) the training set was divided into 5 subsets.
Four of them were used for training and the remaining fifth subset was used to
calculate the validation error. This was repeated five times for each subset. The
validation errors from each subset were averaged, to obtain an estimate of the
performance on unknown data. The final values of the parameters (C, γ) were
determined by the least average validation error. After determining the param-
eters, we used the whole training set to train the SVM. We note that we have
implemented the SVM ourselves and did not use any publicly available library.

Data preprocessing has a major influence on the performance of the SVM.
We tested two different preprocessings — one consisting only of scaling and
the second one of Principle Component Transformation (PCT) and subsequent
scaling. Our experiments were inconclusive as to which preprocessing was better.
Although the error on the training set was usually lower when the PCT was
used, the error on the testing set was higher. Therefore, we chose scaling as the
only preprocessing step in all experiments described in this paper. As shown in
Section 4.2, the PCT is useful for visualizing the features.

By scaling, we understand that all elements of the feature vector were linearly
scaled to the interval [−1, +1]. The scaling coefficients are always derived from
the training set. When the n-fold cross-validation is employed, coefficients are
computed on n− 1 subsets used for training to estimate the validation error of
the remaining subset.

3.2 Multi-class Support Vector Machines

Support vector machines are naturally able to classify only 2 classes. There exist
various extensions to enable the SVMs to handle more then two classes. They
can be roughly divided into two groups −“all-together” methods and methods
based on binary classifiers. A good survey with comparisons is the paper by
Hsu [13] where the authors conclude that methods based on binary classifiers
are better for practical applications. We tested the “Max Wins” and Directed
Acyclic Graph (DAG) SVMs [19]. Both methods employ n(n−1)

2 binary classifiers
for every pair of classes (n is the number of classes into which we wish to classify).
Since both approaches had very similar performance in our tests, we only present
the results from the “Max Wins” classifier.

In the Max Wins method, the sample that we want to classify is presented
to all classifers and the histogram of their answers is created. The class corre-
sponding to the highest peak is selected as the target class.

3.3 Database of Images

For our experiments, we created a database containing more than 35000 images
obtained from 3436 different source images taken by various digital cameras all
originally stored in the raw or lossless TIFF format (Nikon D100, Canon G2,
Olympus Camedia 765, Kodak DC 290, Canon PowerShot S40, and images from
Nikon D100 scaled by a factor of 2.9 and 3.76). For each image, we embedded



OutGuess F5 MB1 MB2
Machine cover 100% /50% /25% 100% / 50% / 25% 100% / 50% / 25% 30%

cover×F5 2700 − 900 / 900 / 900 − −
cover×MB1 2700 − − 900 / 900 / 900 −
cover×MB2 2700 − − − 2700

cover×OutGuess 2700 900 / 900 / 900 − − −
cover×stego 2700 225 / 225 / 225 225 / 225 / 225 225 / 225 / 225 675

MB1×F5 − − 900 / 900 / 900 900 / 900 / 900 −
MB1×MB2 − − − 900 / 900 / 900 2700

MB1×OutGuess − 900 / 900 / 900 − 900 / 900 / 900 −
MB2×F5 − − 900 / 900 / 900 − 2700

MB2×OutGuess − 900 / 900 / 900 − − 2700

OutGuess×F5 − 900 / 900 / 900 900 / 900 / 900 − −

Table 1. Training set for the 2-class SVMs. The leftmost column denotes the particular
SVM, the remaining columns contain the number of randomly chosen images in the
training set.

a random binary stream of different lengths using five different algorithms —
OutGuess ver 0.2 [20], F5 [24], MB1, MB2 [21], and JP Hide&Seek [1]. For
F5, MB1, and OutGuess we created three different versions of each image with
different lengths of the embedded message — 100%, 50%, 25% of the maximal
capacity for a given image and embedding algorithm. For MB2, we embedded
only one message of length equivalent to 30% of the capacity of MB1 to minimize
the cases when the deblocking algorithm fails. For JP Hide&Seek, in compliance
with the directions provided by its author we inserted messages with length equal
to 10% of the image size.

If we summarize our database, each raw image is present in 12 different forms
— MB1 100%, MB1 50%, MB1 25%, MB2 30%, F5 100%, F5 50%, F5 25%,
OutGuess 100%, OutGuess 50%, OutGuess 25%, JP Hide, and cover JPEG. All
cover and stego images used the same quality factor of 75.

In the beginning of our experiments, we divided the images into two disjoint
sets — the training and testing sets. The training subset contained 2900 images
(referring to the unique source images). From this set we have randomly chosen
the training sets (Table 1) used for determining the parameters of each SVM
and for its training as described in Section 3.1. The testing subset consisted of
the remaining 534 source images. By dividing the source images into two disjoint
sets, we made sure that during training no images from the testing set were used
in any of their forms.

In our experiments, we built various SVMs all of which were trained on
randomly chosen images from the training set. Thus, it could happen that one
image was present in the training set in several different forms (the same source
image with different message lengths, embedded with different stego-algorithm,
or of different sizes).



Table 1 summarizes the number of examples in the training sets used in our
experiments.

4 Experimental Results

In this section, we present experimental results from our classifiers. Unless stated
otherwise, all results were derived on samples from the testing set that were not
used in any form during training.

4.1 Two-class SVMs

We started our experiments by first constructing a set of two-class SVMs for
distinguishing cover JPEG images from stego images embedded with a specific
steganographic software. We construct such classifiers for both the DCT features
and wavelet features [8] to obtain some performance comparison. The Matlab
program for calculating the wavelet features was obtained from the authors’ web
site (http://www.cs.dartmouth.edu/˜farid/research/steganography.html). Since
the authors of [8] do not describe the configuration of their SVM, we determined
the parameters ourselves as described in Section 3.1. The features were compared
on four different tasks — distinguishing between cover images and one specific
steganographic algorithm (F5, MB1, and OutGuess 0.2 embedded with 100%,
50%, and 25% messages, and MB2 embedded with 30% message of the MB1
capacity).

Although the wavelet features were originally proposed to be calculated from
the luminance component only, it has later been shown that they benefit from
considering the chrominance channels as well, which is especially true for detec-
tion of the F5 algorithm [24,18]. As we are interested in performance comparison
also for grayscale images, which in general appears to be the worst case for ste-
ganalysis both in the DCT and spatial domains, in our experiments we calculated
both feature sets only from the luminance part of JPEG images. Thus, there were
total of 23 DCT features and 72 wavelet features. The composition of training
examples for each particular SVM is given in Table 1.

The SVM parameters together with errors on the training and testing sets
are shown in Table 2. We conclude that for grayscale JPEG images, the DCT
features perform better than wavelet features. This is not surprising as the DCT
features were built specifically for JPEG files while the wavelet features are
more universal and can be used for steganographic methods that embed in any
domain. The results are also compatible with the previously published evaluation
of blind steganalyzers in [17] and the work [9]. Another conclusion we can draw is
that the least detectable stego program among the tested algorithms is the MB2
algorithm (Model Based Steganography with deblocking). At 30% of capacity
of MB1, the MB2 algorithm is detected in 98.2% cases with 3.8% false alarms.
Comparing this with the results for MB2 reported for the same features with
a linear classifier in [9], we see that the SVM classifier has markedly better
performance. Another advantage of DCT features is that the training is faster



Misclassification on False positives on
Classifier γ C train. set test. set train. set test. set

DCT — cover×F5 0.5 64 1.29% 1.8% 0.59% 1.8%
DCT — cover×MB1 0.25 128 1.26% 1.6% 1.07% 1.4%
DCT — cover×MB2 0.5 64 1% 1.8% 1.3% 3.8%

DCT — cover×OutGuess 0.25 32 0.07% 1% 0.1% 0.2%

Wavelet — cover×F5 0.5 128 4.8% 24.6% 3.4% 17.2%
Wavelet — cover×MB1 0.0625 512 23.7% 34.2% 18.5% 22%
Wavelet — cover×MB2 0.03125 64 39.8% 40% 40% 42.4%

Wavelet — cover×OutGuess 0.25 256 3.26% 16.4% 1.7% 11.6%

Table 2. Error on training and testing sets for wavelet and DCT features (default zero
threshold for all machines). Each set includes an equal number of examples of cover
and stego images.

because the features have lower dimension and better separability compared to
the wavelet features.

4.2 Principal Component Analysis

We used the PCT to analyze the effective dimensionality of the DCT-based fea-
ture space. The features were computed from only 1073 images embedded with
the maximal message length using OutGuess 0.2, F5, and MB1. Since there were
only three eigenvalues with magnitude above 0.02, we could plot the features in
a three-dimensional space and nicely visualize the clouds of feature points cor-
responding to different steganographic algorithms (Figure ). This representation
enables visual inspection and interpretation, which could be a useful forensic
tool by itself.

4.3 Universal Machine

By universal, we mean a classifier able to classify images into two classes —
cover and stego images. The training set for this machine is described in Table 1
in the row “cover×stego”. The SVM was trained with parameters γ = 0.25,
and C = 512 determined using the multiplicative grid search. The error on the
training set was 1.44% (1.96% misclassification, 1.09% false positives). Table 3
covers the performance of the universal machine on all images from the testing set
in our database. The number of images varies between algorithms because some
algorithms fail on some images (e.g., blue sky images). The leftmost column
contains the class (algorithm and relative size of the message) to which the
examples belong. The remaining columns show the number and percentage of
images recognized by the universal machine as cover and stego images for two
choices of the threshold.

We see that the universal machine was able to generalize and detect images
embedded with JP Hide as stego images even though it was not trained on such
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Fig. 1. First 3 coordinates with the highest variance after applying PCT to DCT
features.

images. The second and the third columns of Table 3 show the performance of the
universal machine with the default threshold 0. We can see very good detection
(above 98%) for all methods for images with messages whose length is greater
than 50% of the image capacity with the overall rate of false alarms at 3.5%.
After adjusting the threshold from the default value 0 to 0.994593 in order to
obtain less than 1% of overall false alarms (fourth and fifth columns), the overall
false positive rate lowers to 1.3% and the detection accuracy of stego-images
with message length greater than 50% remains at a very good level but the
performance on stego images with small messages is worsened. This is especially
true for F5, which we attribute to the effects of matrix embedding that improves
the embedding efficiency by a large margin for short messages. We also point out
the high detection of OutGuess with 25% messages (98.1%). As the capacity of
OutGuess is already small, we conclude that OutGuess 0.2 is highly detectable
and quite unsafe for steganography.

Some authors report the performance of classifiers using detection accuracy
ρ (the area between the ROC curve and the diagonal normalized to 1 for perfect
detection) and the false positive rate at 50% detection of stego images. For our
universal machine we obtained ρ = 0.98 and 0% false positives at 50% stego
detection on a database of 480 cover images and the same number of stego
images embedded as in Table 3.



Classified as Classified as
Embedding algorithm cover stego cover stego

F5 100% 2 (0.37%) 532 (99.6%) 5 (0.93%) 529 (99%)
MB1 100% 3 (0.56%) 530 (99.4%) 3 (0.56%) 530 (99.4%)

OutGuess 100% 3 (0.56%) 531 (99.4%) 5 (0.93%) 529 (99%)

F5 50% 2 (0.37%) 532 (99.6% 7 (1.31%) 527 (98.6%)
MB1 50% 2 (0.37%) 531 (99.6%) 4 (0.75%) 529 (99.2%)

OutGuess 50% 3 (0.56%) 531 (99.4%) 4 (0.74%) 530 (99.25)

MB2 30% 27 (5.06%) 506 (94.9%) 73 (13.7%) 460 (86.3%)

F5 25% 54 (10.1%) 480 (89.8%) 149 (27.9%) 385 (72%)
MB1 25% 38 (7.12%) 495 (92.8%) 90 (16.8%) 443 (83.1%)

OutGuess 25% 5 (0.93%) 529 (99%) 10 (1.87%) 524 (98.1%)

JP Hide 6 (1.12%) 528 (98.8%) 10 (1.87%) 524 (98.1%)

cover 515 (96.4%) 19 (3.5%) 527 (98.8%) 7 (1.3%)

Table 3. Performance of the universal machine with the default threshold 0 (second
and third columns) and with the adjusted threshold to obtain less than 1% of false
alarms (fourth and fifth columns).

SVM cover×F5 cover×MB1 cover×MB2 cover×OutGuess MB1×F5

C 64 128 64 32 8
γ 0.5 0.2564 0.5 0.25 1

SVM MB1×MB2 MB1×OutGuess MB2×F5 MB2×OutGuess OutGuess×F5

C 16 64 64 32 64
γ 0.5 0.25 0.5 0.25 0.125

Table 4. Parameters (C, γ) of SVMs with the Gaussian kernel used in the “Max Wins”
multi-classifier.

4.4 Max Wins Multiclassifier

One of the main goals of this paper is to build a classification machine able to
detect not only the presence of secret messages in images, but also recognize
steganographic algorithms. For this task, we chose the “Max Wins” algorithm,
briefly described in Section 3.2. It consisted of 10 two-class SVMs (all SVMs
from Table 1 except for cover×stego) classifying between every pair out of five
classes (cover, F5, MB1, MB2, and OutGuess 0.2 classes). The parameters of
the binary SVMs are summarized in Table 4. The confusion matrix in Table 5
is used to evaluate the performance.

Similar to the universal machine, the performance significantly improves as
the size of messages exceeds 50% of the image capacity. In this case, the “Max
Wins” machine is able to correctly identify the algorithm used for embedding
with a very good accuracy (over 97%). Comparing its ability to separate cover
and stego images with the universal machine, we see that the “Max Wins” has
a better performance on images with a low embedding rate. The difference in
performance is especially noticeable on images 25% embedded with F5 when the



Classified as
Embedding algorithm cover F5 MB1 MB2 OutGuess

F5 100% 2 (0.37%) 531 (99.4%) 1 (0.18%) 0 (0%) 0 (0%)
MB1 100% 3 (0.56%) 0 (0%) 526 (98.6%) 1 (0.19%) 3 (0.56%)

OutGuess 100% 2 (0.37%) 0 (0%) 0 (0%) 0 (0%) 532 (99.6%)

F5 50% 4 (0.74%) 522 (97.7%) 7 (1.3%) 1 (0.18) 0 (0%)
MB1 50% 3 (0.56%) 7 (1.3%) 506 (94.9%) 12 (2.26%) 5 (0.93%)

OutGuess 50% 3 (0.56%) 1 (0.18%) 3 (0.56%) 0 (0%) 527 (98.6%)

MB2 30% 8 (1.5%) 14 (2.6%) 17 (3.2%) 492 (92.3%) 2 (0.38%)

F5 25% 17 (3.2%) 463 (86.7%) 27 (5.1%) 26 (5.9%) 1 (0.19%)
MB1 25% 16 (3%) 26 (4.9%) 411 (77.1) 75 (14.1%) 5 (0.93%)

OutGuess 25% 4 (0.75%) 7 (1.31%) 16 (3%) 23 (4.3%) 484 (90.6%)

JP Hide 9 (1.7%) 334 (62.5%) 158 (29.6%) 27 (5.1%) 6 (1.1%)

cover 510 (95.5%) 5 (0.93%) 4 (0.75%) 15 (2.8%) 0 (0%)

Table 5. Confusion matrix for the “Max Wins” multi-classifier with default thresholds.
Images are from the testing set only. The left most column contains the algorithm and
the embedded message length. The remaining columns show the results of classification.

cover×F5 cover×MB1 cover×MB2 cover×OutGuess

Threshold 0.748756 1.26615 0.653331 -0.699928
False positives 0.8% 0.8% 0.8% 0.8%
Detection rate 95.6% 89.7% 95.4% 99.3%

Table 6. New thresholds of two-class SVMs used in “Max Wins” classifier.

universal machine has a detection rate of 89.9% vs. 96.8% for the “Max Wins”
multi-classifier. The universal machine has a lower overall false positive rate of
3.5% vs. 4.5% for the “Max Wins” classifier. The better performance of the
“Max Wins” classifier on images with a lower embedding rate is probably due
to the higher total number of examples used during training.

Since a high false positive rate is not desirable, we adjusted the decision
threshold for each SVM detecting cover images. For this purpose, we created
special training sets intended only for the purpose of adjusting the thresholds.
These sets contained the same number of cover and stego images for each embed-
ding algorithm. For example, to adjust the threshold for cover×F5, we prepared
a set consisting of 480 cover images, 160 images with 100% message, 160 images
with 50% messages, and 160 images with 25% messages. Then we adjusted the
threshold to obtain a false positive rate less than 1%.

Table 6 shows the false positive rate and the detection rate for a given ma-
chine and threshold. The thresholds were chosen as the smallest values producing
the false positive rate below 1%. The thresholds of all remaining SVMs used in
the “Max Wins” classifier were set to the default value of 0.

Table 7 shows the performance of the multi-classifier with thresholds ad-
justed to lower the false positives. We see that the false positive rate was de-



Classified as
Embedding algorithm cover F5 MB1 MB2 OutGuess

F5 100% 4 (0.75%) 529 (99.1) 1 (0.19%) 0 (0%) 0 (0%)
MB1 100% 5 (0.94%) 0 (0%) 524 (98.3%) 1 (0.19%) 3 (0.56%)

OutGuess 100% 2 (0.37%) 0 (0%) 0 (0%) 0 (0%) 532 (99.63%)

F5 50% 4 (0.75) 521 (97.6%) 7 (1.31%) 1 (0.19%) 1 (0.19%)
MB1 50% 3 (0.56%) 7 (1.31%) 506 (94.9%) 12 (2.6%) 5 (0.94%)

OutGuess 50% 3 (0.56%) 1 (0.19%) 3 (0.56%) 0 (0%) 527 (98.7%)

MB2 30% 29 (5.4%) 11 (2.1%) 14 (2.6%) 477 (89.5%) 2 (0.38%)

F5 25% 64 (12%) 426 (79.8%) 20 (3.8%) 22 (4.1%) 2 (0.37%)
MB1 25% 85 (15.6%) 20 (3.8%) 358 (67.2%) 65 (12.2%) 5 (0.93%)

OutGuess 25% 5 (0.94%) 6 (1.1%) 16 (3%) 22 (4.1%) 485 (90.8%)

JP Hide 10 (1.9%) 332 (62.2%) 159 (29.8%) 27 (5.1%) 6 (1.1%)

cover 525 (98.3%) 1 (0.19%) 3 (0.56%) 5 (0.94%) 0 (0%)

Table 7. Confusion matrix for the “Max Wins” classifier with adjusted thresholds.

creased to 1.69%, while the machine kept its good classification performance on
images with larger messages. In comparison with the universal classifier, the false
positive rate is now similar (universal — 1.3%×“Max Wins” — 1.7%) but the
detection performance of the “Max Wins” classifier images with short messages
still outperforms the universal classifier. We note that the training of the “Max
Wins” classifier is significantly more time consuming, since it is necessary to
train n(n−1)

2 more SVMs, while the size of the training set remains the same.
Note that images embedded with the JP Hide algorithm are again correctly

identified as stego images and the classifier identifies them mostly as F5 (62%)
and MB1 (30%). This suggests a potential similarity between the embedding
mechanisms. Obviously, it is possible that different stego programs use the same
or very similar embedding mechanisms in which case, their separation by a blind
classifier may become impossible. In our future work, we intend to further expand
the proposed approach to allow the multiclassifier to recognize a new class (a
new embedding mechanism).

Next, we examined the images that were misclassified by the multi-classifier
with the intention to learn more about its performance. In particular, we in-
spected all misclassified cover images and stego images containing a message
larger than 50% of the image capacity. Most of the misclassified images were
taken by Nikon D100 camera or they were scaled versions of an image taken
by this camera. This is surprising, because images taken by Nikon D100 were
large (3008×2000) to provide sufficient statistics. We noticed that some of these
images were very noisy (images taken at night using 30 second exposures), while
others did not give us any visual clues as to why they were misclassified. We
note, though, that the capacity of these images was usually below the average
capacity of images with the same size.

As the calibration used in calculating the DCT features subjects an image
to compression twice, the calibrated image has a lower noise content than the



original JPEG image. Thus, we hypothesize that very noisy images might pro-
duce outliers. To test this hypothesis, we had blurred the misclassified Nikon
D100 cover images (false positives) using a blurring filter with Gaussian kernel
with diameter 1 and reclassified them. After this slight blurring, all of them were
properly classified as cover images thus confirming our hypothesis.

Most of the misclassified images from the remaining cameras (Canon G2,
Olympus Camedia 765, Kodak DC 290, and Canon PowerShot S40) were “flat”
images, such as blue sky shots or completely dark images taken with a covered
lens (these images were test images used by other members of our research
group). The flat images do not provide sufficient statistics for steganalysis. As
these images have a very low capacity (in tens of bytes) for most stego schemes,
they are not suitable for steganography anyway.

5 Conclusions

In this paper, we build a multi-class steganalytic classifier capable of not only
detecting stego images but also classifying them to appropriate stego algorithms.
The classifier is a support vector machine with a Gaussian kernel trained on
calibrated features calculated directly in the DCT domain [9]. We have trained
the classifier on over 35000 images obtained by embedding messages of different
sizes using different stego programs in almost 3436 unique source images from
several digital cameras.

First, two class machines are built that distinguish between all pairs of image
classes (cover, F5, MB1, MB2, OutGuess 0.2). These machines are used to com-
pare the performance with the previously proposed classifier that uses wavelet-
based features [8]. The two-class machines are then used to build a multi-class
machine using the “Max Wins” approach . The performance is evaluated via
confusion matrices. We conclude that it is, indeed, possible to reliably classify
stego images to their appropriate stego methods, at least for sufficiently long
messages. The multi-class machine is also capable to generalize to previously
unseen stego methods (JP Hide&Seek). By analyzing the misclassified images,
we conclude that images with a high level of noise are more likely to be misclas-
sified, indicating a possible limitation of the calibration process for calculating
features. Including non-calibrated version of the DCT features might help resolve
this issue.

In our future work, we plan to extend this multi-classifier to other JPEG
steganographic techniques available on the Internet and extend its scope to deal
with double compressed images. Also, it is desirable that the classifier can au-
tomatically recognize a new embedding algorithm and automatically create a
new class of stego images. This is, however, not an easy task to do with support
vector machines. Further investigation of this topic is part of our future effort,
as well.
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23. R. Tzschoppe, R. Bäuml, J.B. Huber, and A. Kaup. Steganographic system
based on higher-order statistics. In Proceedings of SPIE Electronic Imaging, Secu-
rity, Steganography, and Watermarking of Multimedia Contents V, pages 156–166,
Santa Clara, CA, 2003.

24. A. Westfeld. High capacity despite better steganalysis (F5 a steganographic al-
gorithm). In I.S. Moskowitz, editor, Information Hiding. 4th International Work-
shop, volume 2137 of Lecture Notes in Computer Science, pages 289–302. Springer-
Verlag, 2001.
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