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ABSTRACT

We study the problem of directed attacks on the learning pro-
cess of an anomaly-based Intrusion Detection System (IDS).
We assume that the attack is performed by a knowledgeable
attacker with an access to system’s inputs, outputs, and all in-
ternal states. The attacker uses his knowledge of the IDS (im-
plemented as an ensemble of anomaly detection algorithms)
and its internal states to design the strongest undetectable at-
tack of a particular type. We have experimented with dif-
ferent attacks against several anomaly detection algorithms
individually, and against their combination. We show that
while the individual anomaly detection algorithms can be eas-
ily avoided by the worst-case attacker that we assume, it is
nearly impossible to avoid them simultaneously. These re-
sults were achieved during the experiments performed on uni-
versity network traffic and are consistent with theoretical hy-
pothesis grounded in steganalysis and watermarking.

1. INTRODUCTION

Network intrusion detection systems (NIDS) are becoming a
standard part of security measures protecting enterprise com-
puter networks. NIDS are usually deployed on the perimeter
of the protected network, but their role is not limited to the
detection of attacks from the outside, as they are also used
to scrutize traffic generated within the protected network in
order to identify hosts infected by malware [1], to detect in-
formation ex-filtration [2], and other types of unwanted traffic
(p2p networks, skype, etc.).

Most frequently deployed NIDS, such as SNORT [3] or
BRO [4], rely on the signature matching mechanism, where
payload of packets is inspected and matched against signa-
tures of known malware and other threats. Despite their wide
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spread use, they posses many undesirable properties, some of
them being the need of keeping database of signatures up to
date (implying the inability to detect zero day attacks), in-
ability to scrutinize encrypted traffic, and high computational
demands. To alleviate these limitations, a lot of research ef-
forts is devoted to intrusion detection systems based on the
anomaly detection paradigm.

Anomaly detection based NIDS [5] relies on the assump-
tion that the attack traffic has different statistics from the be-
nign one. The usual approach to detect attack traffic is to
identify outliers with respect to the model of the whole traf-
fic, which is assumed to be mostly benign. The model of
whole traffic is usually built online. On one hand, this choice
enables adaptation to changes, as it is assumed the trafic to be
non-stationary and network-specific. On the other hand, the
adaptivity undermines the security of NIDS, since the knowl-
edgeable adversary can manipulate the model, such that the
attack traffic will be classified as benign [6, 7].

Attacks on intrusion detection systems are not particularly
novel when considered from broader perspective. Through-
out the history, countermeasures to and attacks on radar,
sonar, IFF systems and related technologies were deployed
very early after their introduction. This is also true for the
NIDS [8, 7]. However, attacks discussed here stand out by
being directed against the detection algorithm itself, rather
than against sensors. Attacker uses its knowledge of detection
algorithms to probe and progressively mislead the detection
and pattern recognition algorithms, so that they are blinded.
This category of attacks, based on the Adversarial Machine
Learning (AML) will become prominent with the increased
use of data mining, machine learning, and AI in general for
broader security practice.

In this paper, we concentrate on increasingly important
case of attacks on systems, where a set of diverse anomaly de-
tectors works as an ensemble, effectively constituting a single
joint detector [9]. This configuration prompts two key ques-
tions related to the AML problem:

• Can simple detectors be individually attacked in order
to render them blind w.r.t. detection of particular at-
tack?



• Is the ensemble of detectors more or less vulnerable to
such attack?

Specifically, the goal is to perform an undetected attack,
since as will be argued later, this is a key step in shifting the
NIDS’ state towards acceptance of large-scale attacks. The
investigation is performed under the worst-case scenario for
the defender (NIDS), as the attacker has full access to all in-
ternal states of the system. In the categorisation introduced by
Barreno [6], this is an exploratory, targeted attack on integrity
of the detection process.

2. HIDING THE ELEPHANT

Ptacek et al. [8] has identified two, complementary strategies
to evade the detection. The evasion strategy decreases the in-
tensity of the attack or modifies it such that it will be accepted
by the NIDS, while the insertion strategy adds supplemental
traffic to mask the actual traffic caused by the attack.

The first attacker’s strategy is to lower the strength of the
attack1 and spread it over longer period of time. The rationale
behind is that by making the strength of the attack very small,
the proportion of the attack traffic with respect to the total will
be low as well. This will make it difficult to be separated from
the benign traffic, as it would not be clear, if it is a noise or
a signal. Its drawback is that the strength of the attack can
be so low that the possible reward for the attacker would not
be interesting anymore, and he will look for other target. An
example is brute-force cracking of a SSH password, where
having only couple trials per minute is practically useless.

Notice that the successful evasion strategy is a key re-
quirement for modification of NIDS’ internal states to accept
large attack. To shift the internal state to this point, the at-
tacker starts with a small attack and gradually increases its
intensity, such that it is just below the detection threshold. By
doing so, he hope to reach point, where his large attack is not
detected [6]. This strategy is used in experiments described
in Section 3.1.

This idea has been experimentally verified by Rubinstein
et al. [7], who has targeted the detector of Lakhina et al. [10].
A simpler approach has been investigated by Newsome et
al. [11], who proposed to shift just the detection threshold
toward accepting the malicious traffic by increasing false pos-
itive rate (red-herrink attack). Both works [7] and [11] exploit
the fact that targeted systems had distinct training phase (dur-
ing which the model of the traffic is inferred) and detection
phase (during which the system is actually used to detect the
attacks). We do not believe these conditions to be realistic,
since due to the non-stationarity of the traffic, models need
to be constantly updated (learned). Moreover, algorithms in

1Under the term ”strength of the attack”, we understand the bandwidth
occupied by the attack traffic. The bandwidth can be measured for example
by bits / packets / flows per second.

both approaches were allowed to raise as many false alarms,
as possible, which we again do not consider to be realistic.

In the second strategy, the attacker generates additional
traffic not directly related to the attack. Its purpose is to con-
ceal the actual attack, such that the overall statistics of at-
tacker’s traffic observed by the detection system look innocu-
ous.

Although the insertion strategy is interesting, we do not
believe to be useful in practice. The amount of the additional
traffic needed to conceal the attack traffic might be so large
that the attacker might not be able to generate it with his lim-
ited resources, or it will be easily detectable by detectors mon-
itoring volume of the traffic [10, 12]. Moreover, the additional
traffic might disturb some network statistics the attacker is not
aware off 2, which can make his activities easily detectable.

Notice here the similarity to steganography, where com-
municating parties try to hide the secret message into innocu-
ous looking objects (e.g. digital image). In the steganogra-
phy domain it has been already many times experimentally
verified that making more changes, which corresponds to the
insertion strategy, increases the probability of being detected.
Due to above arguments, we investigate the evasion strategy
only, and left the other for a future work. We believe it to
be more important, as the attacker has higher probability of
being successful with less resources.

3. EXPERIMENTS

3.1. Experimental details

In this section, we evaluate chances of the attacker to success-
fully plant an evasion attack. We emphasise that we simulate
the worst case scenario for the defender, where the attacker
has a full access to all internal states of the NIDS. We assume
the attacker to have limited resources in the sense that the at-
tack is performed only from one subnet (source IPs used by
the attacker differ only in the last octet).

To simplify the implementation and speed-up the ex-
periments, all attacks were simulated by generating the
attack traffic inside the attacked system. The attacked en-
semble of intrusion detection algorithms consisted from a
following set of detectors: volume and entropy detectors of
Lakhina et al, [10] (Lakhina Volume and Lakhina Entropy),
MINDS [12], detectors of XU et al. [13] (Xu sIP and Xu
dIP), and the scan detector presented in [14] (TAPS). Since
all detectors were initially designed for a backbone traffic, we
used their adaptations to enterprise-level networks, described
in [15]. Due to the space limit, we cannot describe algorithms
in detail here, thus we refer the reader to the corresponding
publications.

The detection algorithms processes the traffic in 5-minute
long time windows. Due to the continuity, attack flows to
be used in the time window t + 1 needs to be prepared in

2This is actually inconsistent with our assumptions, but yet worth to note



the time window t. They are created such that they are not
detected by the detectors at the time window t (the level of
anomaly is below threshold α = 0.05). For the attacker this
means that he cannot be absolutely certain that the attack will
be undetected, since internal states and the background traffic
have changed. But due to the temporal correlation, attacker’s
chances of success are very high.

Our experiments used three simple and common types
of attack: horizontal and vertical scans, and the brute force
cracking of SSH password. We chose them due to their ubiq-
uity and different characteristics. The horizontal scan have
wide range of destination IPs, usually one destination port,
and low number of bytes and packet counts per flow. The ver-
tical scan usually have one destination IP, many destination
ports, and low byte and packet counts per flow. The Brute
force cracking of SSH password has one destination IP and
port, and high number of packets.

The characteristics not specified for a given type of the
attack are free and the algorithm generating attack flows ma-
nipulates them in order to make the attack traffic undetectable.
The algorithm also verifies that the attack does not lose its
main characteristics (e.g. brute-force cracking of SSH pass-
word whose destination port range needs to be increased from
one to a thousand is not a SSH cracking any more).

The attack traffic is generated as follows. (a) Create the
initial attack traffic according to the specification. (b) If the
level of anomaly, asserted by modified detector(s), exceeds
threshold α = 0.05 on scale [0, 1], modify the traffic. The de-
tectors report, why does it happen and recommend the modi-
fication (e.g. to increase / to decrease entropy of source ports,
to decrease number of flows from / to IP address, etc.). Re-
peat the step. (c) If no detector raises alarm, the generation is
finished and the traffic is mixed with the background traffic.

The algorithm iterates unless the attack is not detected, or
the loop exceeds certain number of iterations, or the attack
has lost its properties. In the last two cases, it is assumed that
the attack cannot be implemented at this time.

The initial strength of the attack is always set to twice the
strength of the attack from the previous time window. If the
attack in the previous time window was not successful, the
strength is set to 150 flows per five-minute long time win-
dow. This simple strategy enables (i) to reach the maximum
strength at exponential rate, and (ii) to simulate the shifting of
NIDS’ internal state toward accepting stronger attacks, as we
continuously try to increase the attack strength.

The experiments used background traffic captured from
the university network with approximately 25 000 flows per
five-minute time window spanning 24 hours. This allows us
to observe the effect of working hours and nighttime. The
attacks were initiated after 50 minute long warm-up period
allowing detectors to reach their working conditions. We em-
phasise that we do not need the background traffic to be la-
beled, as our focus is the detection of simulated attack flows,
rather than the background flows.
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Fig. 1. Evolution of the strength of the brute-force cracking
of SSH password targeted to bypass individual detectors, and
all detectors collaborating together (label “all”). The strength
of the attack is measured as a percentage of total number of
flows in background traffic.

3.2. Experimental results

The results of our experiments are summarised in Table 1. We
can see that outcomes on different attacks are very similar.
Our algorithm was able to create attacks of any strength
against individual detectors based on entropies (Xu sIP,
Xu dIP, and Lakhnina Entropy). This is an expected re-
sult, since these detectors do not take the volume of the traffic
into the account, as their rely entirely on the distribution of its
flows. Bypassing TAPS detector is very easy, since this detec-
tor only scrutinise flows with one packet, hence the algorithm
was able to immediately devise attack of any strength.

Contrary, detectors modelling the volume of the traffic
(Lakhina Volume, MINDS) proved to be very limiting. Al-
though it was possible to bypass them, the strength of the
attack was very limited. It is interesting to observe that the
MINDS detector, which is a way simpler than Lakhina Vol-
ume, proved to be more efficient in limiting the attack.

Bypassing all detectors simultaneously proved to be al-
most impossible. In fact, the algorithm has failed except the
SSH password cracking, where the strength of the attack was
0.14% of the background traffic. This corresponds to rate of
7 passwords tried per minute, which renders the cracking use-
less.

Figure 1 shows the evolution of the strength of the brute-
force cracking of SSH password (graphs for other attacks are
virtually the same, hence they are omitted to save the space).
We can observe that strength of attacks against Xu sIP, Xu dIP,
Lakhina Entropy, and TAPS detectors exponentially grows to
infinity. From this reason, experiments with these detectors
were stopped after processing 20 five-minute long snapshots



Detector horizontal scan vertical scan SSH bruteforce
strength success strength success strength success

Lakhina Volume 13.7% 100% 6.23% 100% 5.89% 100%
Lakhina Entropy +∞ 100% +∞ 100% +∞ 100%
MINDS 2.06% 92.36% 1.09% 93.05% 0.85% 85.06%
TAPS3D +∞ 100% +∞ 100% +∞ 100%
Xu sIP +∞ 100% +∞ 100% +∞ 100%
Xu dIP +∞ 100% +∞ 100% +∞ 100%
All 0 0% 0 0% 0.14% 79.16%

Table 1. The rows shows statistics of attacks designed to bypass individual detectors. The last row ”All” shows the same
when bypassing all detectors simultaneously. Columns captioned ”strength” shows the average strength of the attack expressed
in percents of flows of background traffic. +∞ means that the algorithm was able to find attack of any strength. Columns
captioned ”success” shows the rate, at which the attack was undetected.

(10 snapshots for warm-up and 10 for generating the attack).
This is on par with above elaborations, as the first three de-
tectors use entropy measures to assess the level of anomalous-
ness.

Contrary, attacks against Lakhina Volume and MINDS
detectors quickly reach their maximum strength and stays
at the similar level. It is interesting that the attack against
MINDS has its maximum strength during night hours, and
from approximately 7:00am (people arriving to university),
the strength declines. These observations contradict our ini-
tial assumption that attacks are easier to detect when the
traffic is low. Our explanation of this phenomenon is that
during business hours, there is an additional traffic interfering
with the attack. The MINDS detector checks that the absolute
number of flows does not exceed the threshold. Thus, if we
sum background and attack traffic together, the space left for
the attack is smaller during day hours. The same holds for the
Lakhina Volume detector.

4. CONCLUSION AND FUTURE WORK

This paper aimed to practically investigate, if a knowledge-
able attacker can avoid detection of real NIDS implemented
as an ensemble of simple anomaly detectors. We have fo-
cused on the evasion strategy of the attacker, because it is
simpler, more likely to succeed, and it is an essential compo-
nent of the strategy, where the attacker tries to modify internal
states of well designed NIDS towards accepting large-scale
attacks. Experiments assumed the worst-case scenario for the
defender (NIDS), where the attacker has full access to all in-
ternal states of the NIDS.

The evasion strategy was implemented against the subset
of six diverse anomaly detectors deployed in one of the lay-
ers of commercially available CAMNEP system. Our results
show that while it is possible to bypass individual detectors,
it is nearly impossible to do so when detectors are used as an
ensemble. This implies that NIDS implemented as an ensem-

ble of diverse detectors is very robust against the modification
of its internal state.

This is important for the design of future NIDS. We be-
lieve that (i) they should by implemented by a mix of de-
tectors, some of them being adaptive, and some of them be-
ing static (the latter can prevent the detector’s manipulation
despite their low detection accuracy); (ii) It is important to
use detectors modelling the volume of the traffic, as they can
fairly limit the strength of the attack.

Strategically, our results imply that well-designed ensem-
ble detectors are currently safe from adversary’s manipula-
tion, provided that: (i) the attacker is not able to influence
the majority of the traffic in the monitored network; (ii) the
ensemble contains detectors that are able to detect unusually
increased traffic volumes required for causative attacks. Elab-
orating on (ii), we argue that detection algorithms mutually
protect each other, as the detection capabilities of other de-
tectors limit the volume and properties of the traffic that the
attacker can use to attack the target detector. This makes the
causative integrity attacks suboptimal, as they would require
more traffic than purely exploratory attacks.

We believe that in the long term, the adversarial machine
learning approaches will rely on techniques from game the-
ory and game playing fields in order to (i) strategically select
detectors in the ensembles and (ii) to perform the fusion of
information within the ensemble.
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